
怎样才能正确利用数据来抓住目标用户?
运营人员通常比较关心的一个问题是:用什么样的方法来重新获取已经流失的用户?今天我们来谈谈有哪些关键的指导策略,怎样才能正确利用数据来抓住你的目标用户?
一般情况下,当运营人员谈到重新获取用户的方法时,通常指的是策划一些活动通过消息推送的方式来激励那些已经流失的用户,使他们重新回来。但这个大家都在用的方法一般都得不到好的效果,为什么呢?原因在于他们是在“战役失败”了以后才采取措施。
当你发现用户流失后,会不顾一切的策划活动。比如:一个很大的折扣或者某些促销手段,但往往换来的是那些给你带来利润最少和维护成本最高的用户。结果证明:这是一个失败的策略。一旦你的应用被用户“打入冷宫”,几乎没有办法唤醒这些流失的用户。你需要做的是,在用户流失之前就抓住他们。这才是正确的选择。
某App新增用户留存数据:第2天和第5天用户留存率较低
那么问题来了,怎样才能留住更多的用户并防止他们流失呢?这就需要应用在每次和用户的交互过程中,能更进一步的了解他们的需求,提升他们的体验,提高用户的满意度。这听起来也许并不复杂,但要真正做好也并不容易,不过总结下来,真正需要做的就是聪明地利用好你的用户行为数据。那么具体如何做?
以下我们给出了4点建议,能够确保你把劲使在了对的地方:
如果花点心思,你就会从你的用户行为数据中发现:有明显的迹象显示用户目前处于什么样的阶段。这需要你观察发现,分析决策并且去行动。其中一个方法是使用用户的生命周期法,定义用户处于一个什么样的生命阶段,在这个阶段中去分析。
首先,针对你的产品业务,整理出用户的生命周期分成哪几个阶段,可以根据你的需要划分得足够细致。比如可以分成:
早期刚进入的阶段
被吸引的阶段
处于流失风险的阶段
流失了的阶段。
然后,你需要定义清楚每个阶段用户是什么样的。
例如:对于电商类应用,早期刚进入的阶段,可以定义为一个用户在他首次购买后15天内的阶段。一个被吸引的用户阶段,可以定义为该用户有至少三次购买或者在一周内访问你的应用超过了10次。另外要确保你对用户生命周期的分类是一个闭环状态,在特定的时间,每个用户都只处于一个阶段,这是用户生命周期得以实行的必要条件。
在定义了不同的用户生命周期阶段之后,你要有可以用来建立用户分类的行为数据。对比一个处在被吸引阶段的用户和一个处于流失风险的用户之间本质上有哪些区别,据此来建立数据模型。搞清楚这些,对用户生命周期每个阶段的建模至关重要。
通过数据识别出哪些用户对你的产品满意,分析他们的行为数据,这些分析结果对于策划营销活动,做精细化运营有着方向性的指导意义。严格的定义加上可以衡量的行为,就可以给用户打标签并分类进行画像,并且能够知道那些处于流失风险的客户需要你做出什么样的决策来进行挽回。
怎么区分一个好的用户和一个坏的用户?那些让你赚到最多钱的用户与那些实际上花掉你钱和资源的用户,哪个是好的哪个是坏的?要分清这些,首先要确立一个平均的用户终生价值,再结合维护不同用户的成本,并将成本整合到他的用户价值中去。
举个例子:有一些用户,他们重度消费了你们的免费支持服务,有些用户令你花费时间去处理很多但很没有必要的数据。把成本考虑进去能帮助你提高划分结果的准确性,并且能够保证哪些是你所关注的、想要留住的目标用户。你也可以增加一些生命周期的阶段来匹配那些利润相对较低的用户,并针对这一人群策划一些营销方案,精准化运营。考虑到他们的终生价值,你也可以直接把他们从你策划的某次活动中去除。
有些你认为很好的运营方案很可能会造成用户的流失。那么如何防止这样的事情发生?这就需要避免只依赖于活动的指标来衡量活动的成功与否,而应该全方位综合来考虑。试想这样一种场景:你策划了一次活动并通过消息推送通知了全部用户,立马发现了转化率的大幅度提高,购买增长,于是你觉得这次活动运营很成功,并且准备继续推行这个方法。但事实上,这次活动反而导致部分用户取消了消息推送功能,甚至卸载了app。这正是在你采取这项推广活动时发生的,你没有考虑用户的全局信息,没有对他们区别对待,不明确他们和你的品牌的关系,这是冒着牺牲未来的风险换来的蝇头小利。
这时就需要对用户进行精细化运营,应该将用户的整个生命时期考虑进来,衡量并跟踪用户在每个时期的情况,而不是只关注活动实行后的立刻的变化。你可以这么做,把用户分成两部分,一部分用户不对他们做任何推送,而对另一部分用户实行活动推送,定期地比较这两组用户的价值。对于关注长期的用户留存和用户参与度有很大的帮助。
我们正在一步步地进入到数据驱动决策的运营时代,以后将会很少见到类似赢回流失用户这样的的策略,更多的是提高用户留存率以及活跃度,策划如何驱动用户真正价值的推广活动。运用户生命周期的框架并不是新提出来的,但做到这些的前提是我们能够准确收集到用户的行为数据,只有这样才能将它成熟地运用起来。如果在你的运营工作中做到以上几点,你将会更了解你的用户,知道哪些用户值得你投入,将你的资源发挥最大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07