京公网安备 11010802034615号
经营许可证编号:京B2-20210330
猎聘网职业大数据分析告诉你数据分析师的前景
从猎聘网的中高端职位数据来看,2015年数据分析师职位需求呈现“井喷式”增长,11月份需求量就超过4185个,占所有职位数的比例也得到持续攀升。可见,“数据驱动决策”的趋势在当下变得尤为重要。
数据分析师职位主要集中在互联网、金融、消费品、制药/医疗等行业,其中互联网和金融行业的数据分析师职位数占比超过了80%,这源于该几类行业已在短期内无论是产品端、用户端、运营端等都实现了大数据的原始积累,且数据增长速度依然可观。
从数据分析师职位的区域分布来看,“北上广深杭”等特大一线城市合计占据88.5%的职位份额,单单北京地区占比就超过四成。对于数据分析师的职业发展来说,“坚守而不是逃离一线城市”才是明智的选择。
互联网行业数据分析的主要对象是产品、运营和用户,其次是市场和客户。以数据为依据,为产品策略、运营战术、用户研究、市场趋势、客户画像等企业关键领域提供必要决策支持。
金融行业普遍重视产品与运营层面的数据分析,除此之外最为重视对客户的分析。而对于风险、信用、信贷与投资领域的分析则是金融行业特色,反映出数据分析已在金融核心业务线上都发挥着重要作用。
三、 数据分析师的薪酬数据分析
无论是初级还是高级岗位,企业都愿意为cda数据分析师提供高于行业平均水平的薪酬。同时,随着工作年限的增加,分析师薪酬与行业平均薪酬的差距逐渐拉大,在15年工作年限时,薪资差距拉大到近20万。
互联网行业年薪超过50万元的分析师职位数最多,占比超过五成;其次为金融行业的21%。巨大的数据量、复杂的数据结构以及结合不同业务而进行的复杂数据开发,造成了数据分析师高端岗位的紧俏。同时也反映出,越来越多的企业(具有大数据基础的)愿意付出高薪解决企业自身数据方面存在的问题。
年薪50万以上的分析师职位主要分布在北京、上海、深圳、杭州、广州。其中北京高端数据分析师职位最为集中。CDA数据分析师官网培训出来的数据分析师很受企业的青睐。
四、 数据分析师的职业技能发展
数据分析师的女:男比例达到1:2,这一比值远远高于其他技术类职位。需要指出的是,这既是男性数据分析师的幸福福利,也从侧面反映出女性在数据分析能力以及数据敏感度方面具有独特的优势所在。
数据分析师从业者的专业背景中,计算机、统计、数学、信息管理等专业的占比相对较高,但其他专业也不少。从另外一个角度来看,无论你是学什么专业出身的,都有新专业、新领域的知识要学。
大数据具有数量大(Volume)、高速率(Velocity)、多样性(Variety)、真实性(Veracity)等特点,这就要求从事中高端数据分析的人员除了具有高超的业务理解能力和沟通能力之外,还必须具有卓越的数据处理能力(包括收集、清洗、存储、查询等)、数据分析能力(数学建模、算法设计、文本挖掘、机器学习、统计软件应用等)、数据可视化能力(基于几何的技术、面向像素技术、基于图标的技术、基于层次的技术、基于图像的技术和分布式技术等)以及数据变现能力(企业运营、产品策略、市场研究、品牌管理、需求分析等)等四大综合性能力,最终还需要得出对企业具有建设性意见的结论性研究成果。
结束语:总而言之,数据分析师是一个极具发展前景的新兴职业:
从行业背景角度
大数据代表着新一代生产力,是万物互联的基础,企业都已将“大数据”提升到最高战略层面,期待其在企业运营、产品策略、市场研究、品牌管理领域发挥关键性作用。
从业务层面而言
数据分析未来更多会在研究人与人(社交等)、人与物(购物或租赁等)、物与物(智能家居与硬件等)的“关系”中发挥重要作用。
从专业人才供需而言
据猎聘人才大数据研究中心预测,2016年中高端数据分析师的人才紧缺指数(指数大于1即为处于紧缺状态)将保持在4.5以上,远远高于行业平均值,处于极度紧缺状态。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06