京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析提升实时营销竞争力
数据集成、列式数据库解决方案能够让营销代理机构处理数百太字节,对消费者进行360度的全方位评估。
Merkle是一家领先的客户关系营销代理机构,目前拥有1600名员工,年营收额超过3亿美元。戴尔、Geico、DirecTV和Chase等知名厂商都是Merkle的客户。由于Merkle通过ParAccel的大数据分析平台对消费者进行360度的全方位评估,因此该公司的客户能够展开实时营销活动,并且能够更高效、更精准地调整这些活动。
在收集客户信息,然后再针对营销目标提供“数据即服务”(data as a service)方面,Merkle有着丰富的经验。以往Merkle会每月批量处理这些海量数据。为了从营销数据库公司向客户关系营销公司转型,Merkle需要调整和整合大数据来源。IP地址、Cookies和电子邮件等数字化消费者信息必须与其姓名、住址和电话号码等传统的离线信息结合在一起。最终,客户需要更深层次的营销互动,例如针对特定消费者的电子邮件和横幅广告。
实现实时性
为了实现这些目标,Merkle需要具备整合所有互动活动,以及能够对每名消费者的行为进行360度全方位评估的能力,同时将每月批量处理这些海量数据的模式调整为近实时处理的模式。为了具备这一能力,Merkle创建了专门用于大数据分析的数据仓库,其中一些部署在客户那里,另一些则由Merkle托管。
在选择适宜的技术方面,Merkle面临的挑战包括大数据分析环境的成本、可预测的高性能和扩展性,以及目前分析解决方案无法满足的特殊需求。最终,Merkle为其大规模并行处理(MPP)列式分析数据库选择了ParAccel分析平台。Merkel的技术副总裁Peter Rogers说:“Merkle选择ParAccel的原因是,因为它拥有优异的执行速度和性价比。”
为了实时分析结构化的大数据,MPP列式分析数据库成为一个普遍的选择。列式存储指关系型数据库将数据以列的方式进行存储,而不是以行的方式进行存储。这样做的优点是获得了更快的查询速度。此外,数据经过压缩后可以进一步地提升查询效率。与此同时,由于MPP的特性使然,用户可只需简单地添加一些商用硬件即可对MPP进行线性扩展。
掘金大数据
经济上的可承担性也是Merkle做出这一选择的重要原因。ParAccel分析平台处理每太数据的价格约为4500美元,这一价格远远低于其他竞争者所给出的价格。成本优势让存储和分析数据具有更大的成本可负担性。自从迁移到ParAccel平台后,Merkle的数据处理量提升了三倍。此外,ParAccel平台还具有更大的容量和500多个先进易用的分析功能。这使得Merkle能够为他们的客户提供更具竞争力的解决方案。
Merkle的一个特殊需求是使用已有的T-SQL技能。T-SQL为微软SQL Server所使用的查询语言。Merkel此前已经广泛使用了微软SQL Server,他们希望公司的数据管理员经过最低限度的培训就能够使用ParAccel平台。ParAccel的专业服务提供了一个T-SQL解析器,开发人员可以用T-SQL编程,然后再将编好的程序翻译成能够在ParAccel平台上高效运行的SQL语言。
在前端,Merkle使用MicroStrategy实现虚拟化和商业智能。数据集成方面,Merkle使用原生的ParAccel工具加载数据。这样一来,所有的转换都能在ParAccel上执行。
目前,Merkel已经部署了五个ParAccel集群,这些集群维护着总计50太压缩数据(相当于200太的原始数据)。Merkel每天根据用户需求处理1至250GB的原始数据。这些客户对Merkel的服务非常满意,这要归功于基于实时互动的360度全方位消费者综合评估。此外,大数据分析还让这些客户能够展开更加精准和有效的营销活动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04