京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,为何内存分析技术至关重要
据估计,大数据技术和服务市场的规模预计每年拥有27%的增长,市值将于2017 年达到 324 亿美元。增长的主要驱动力来自于构成物联网(IoT)的联网设备所产生的海量数据。据估计,到2020年联网设备的数量将会增加到 300 亿台。海量的结构化和非结构化数据成为许多企业面临的新现实,而这也使物联网不断为企业业务带来新的挑战。
为从物联网的发展中获益,行业已创建了各种新工具和新技术,以控制和转换多样化的海量数据。与此同时,各种解决方案也不断涌现,其中既有传统的分析解决方案,也有 Apache™ Hadoop* 这样的全新框架。这些新框架提供了内存计算功能,即将数据存储在主内存中,而非传统硬盘中。此类内存数据库和分析解决方案,能够在几秒钟或几分钟内完成复杂多样化的数据集的分析,而无需耗费数小时或数天时间,分析复杂多样化数据集的性能获得显著提升,从而为企业实时地提供重要洞察。
如今,内存分析解决方案可帮助企业在几秒内获得重要洞察和全新信息,从而能够更快做出准确决策,并推出针对客户需求量身定制的产品与服务。这种实时分析多样化海量信息的能力将使企业从大数据中获得丰厚回报。
何为实时分析?
企业很少能够奢侈地花费数天或数月的时间来存储和分析数据。如果,无法及时捕获和分析产生的数据,则将阻碍企业建立竞争优势。但是,如果企业能够及时地发现特定机遇,则将能够创造出数以千万乃至数亿美元的收入。分析工具可为企业提供实时信息,帮助企业客观、深入地了解重要业务现象,并为管理者提供基于事实的信息,帮助其基于事实、而非直觉制定决策。全新内存分析解决方案构建于向上扩展系统之上,如基于英特尔®至强™ 处理器 E7 v2产品家族的系统等。这类系统并不是通过传统的硬盘访问数据,而是在内存中分析数据,从而提供实时洞察。事实上,最近已有示例表明,内存分析解决方案的分析速度最高是基于磁盘的解决方案的 148 倍3。
以下案例展示了实时分析环境对于众多行业的重要性:
金融服务
对于金融服务行业而言,其价值在于即时关联各种载体上的数据,得出有洞察力的结论。例如,在欺诈检测中,金融机构能够实时对比典型的消费金额、购买类型和消费地点,并快速标记出与常规活动不符的消费习惯。此外,金融机构还能够检测常见的具有欺诈嫌疑的消费模式,例如,在进行金额较小的试探性购买之后,立即在珠宝或电子产品商店进行大额消费的行为。
医疗
医疗行业是一个关键业务环境,实时分析对于该环境有着至关重要的意义。例如:
· 重症监护室,其诊断依赖于对从多种显示器和设备中获得的患者数据的近乎即时地分析。
· 药房要求其平台能够根据医疗记录分析就诊患者的数据,确保正确配药并确定合适的剂量。
零售
密切关注产品竞争价格的零售商对于实时分析的益处有着最直接的认识,实时分析将能够帮助他们显著增加销量并提升客户体验。但是,高速分析需要大量数据消耗以及实时的数据处理能力,以完成以下任务:
· 获得产品完整的竞争定价情报
· 根据定价、商品分类和库存制定实时的数据驱动型决策
· 捕获和处理来自各种来源的数据,如定价、社交媒体、市场营销、销售和支持等
· 提高收益、利润和市场份额
为何内存对于实时分析至关重要?
内存分析在计算机的主内存中进行,不处理存储在物理磁盘上的数据,为查询整个数据集提供了一种重要方法。这一方法可以显著缩短查询响应时间,让商业智能(BI)和分析应用能够支持企业更快地做出明智的业务决策。
商业智能和分析应用需要在主内存中长期缓存数据,而具有数以TB计可寻址内存的系统将能够支持在计算机主内存中缓存大量数据,如整个数据仓库或数据集市等。
除提供速度极快的查询响应以外,内存分析还能够减少或消除数据索引,以及将预汇总的数据存储在在线分析处理(OLAP)数据库或汇总表中的需求。据预测,随着商业智能和分析应用采用内存分析,传统的数据仓库可能仅用于支持不活跃或频率较低的查询。
实时分析领域最新动态
大量数据的存储和实时分析能力将不断为企业、学术机构和政府带来机遇,同时也为IT提供商带来了新的市场空间。
目下,以SAP HANA为代表的内存分析技术迅速崛起,而IBM、微软、Oracle、SAS、Teradata等主流数据库、数据分析及数据挖掘厂商,也都已经将内存分析技术做成了标配功能。
日前,英特尔公司宣布推出新一代至强E7 v2 处理器产品家族,除了在处理器和内存方面实现最高系统持续运行时间的高级可靠性、可用性和可维护性(RAS),还将内存容量和 I/O 速度分别比上一代提高3倍和4倍,从芯片级支持企业实现其数据的全部潜力。包括国际的IBM、HP、Dell、EMC,国内的华为、浪潮、宝德、曙光等多家厂商,纷纷在第一时间基于该芯片推出面向实时分析的解决方案,从而帮助企业以更低的成本进行更高效的运营,并更快速地响应客户需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04