京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据库技术发展的四个方向
数据库技术发展已经超过30年,我认为,最近几年数据库技术发展将会有如下4个方向。
一是规模会向两头发展—大的越来越大,小的越来越小。所谓大的,指的是企业级数据库的规模。10年前,数据库存储的数据大都以GB为基准衡量,几十GB就已经非常庞大。而现在,只广东移动每个月新增的数据量,就已经以TB衡量,不出3年,很多企业要存储的数据就要达到PB级。数据量越来越大,需要更大的数据库做支撑,这就是数据库的发展方向之一。另一方面,数据库也会越来越小。现在,Sybase的数据库已经安装在高档的Casio手表中了,这些手表中记录的有天气情况、气压、佩带者的血压、心跳等数据。这种数据库并不要求数据存储量大,但是要求在低计算量的情况下反应快,而且能够适应外界环境的变化。
二是存储方式从行到列的改变。以前数据库都是以行的形式存储的,理由很简单,用户需要的是对单条数据的读取和存储。而现在,单纯的数据记录已经不足以支撑企业发展了,企业更需要的是数据分析和决策支持。那么,单纯看一条记录没有任何意义,而是要把所有数据的某一项都统计出来进行分析,这就是列的概念。以中国移动为例,上亿个用户,每个月上TB的数据,哪些是VIP用户,该如何根据他们的需求提供专有服务,对于那些动感地带的用户,到底应该制定哪些优惠政策,除了看话费,是不是还能挖掘出他们的消费特点,进行更有针对性的业务推广活动?这些,就不是看一条数据的问题,而需要频繁对列进行操作。我预计,不出半年,各大数据库厂商都会推出以列为存储方式的数据库。
三是非结构化数据仍然不能纳入数据库中。说到这里,可能大家都认为我在逆潮流而动,现在很多数据库厂商都可以接受图像、视频等非结构化数据了,Sybase怎么还要死守着结构化数据呢?其实我认为,非结构化数据要想进入数据库,仍然需要结构化,只是这种结构化的方法各厂商不一样,而且相比以前有了很大的进步和提高。以前我们图片的记录方式是记录它的文件名,如果文件名中提到了某个人的名字,那么在整个数据库查询的时候,就可以把这个图片找到。而这是非常不科学的,因为很多非结构化数据的文件名起的并不可能完全。那么,现在大家把非结构化的数据变得结构化,其实就是在用结构化的数据描述这张图片,比如用点和位置来记录这张图片的每个像素。而一旦需要做查询的时候,可以根据像素的组合记录来比对,把符合比对要求的数据全部筛选出来。这样就把非结构化数据以结构化的方式纳入数据库中了,并能接受查询、检索等操作。
四是数据库和数据仓库会分开。很多数据库厂商认为,数据库一个就行,一专多能,既能用它进行实时交易,也能用它来进行数据分析。但是,其实很多用户现在在前台需要数据库提供实时交易功能,需要有很快的响应速度,而在后台,则需要设立一些规则进行数据分析和商务智能分析。Sybase就认为,这两个数据库应该是两种格式,毕竟它们的功能不一样。因此,从产品设置上,Sybase有交易型数据库和分析型数据库两种。
事实上,30年来,数据库也在不断发展进步。这些预测都是方向性的,不同的企业肯定会有不同的理解,用户的选择是最终的评判标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12