
数据库技术发展的四个方向
数据库技术发展已经超过30年,我认为,最近几年数据库技术发展将会有如下4个方向。
一是规模会向两头发展—大的越来越大,小的越来越小。所谓大的,指的是企业级数据库的规模。10年前,数据库存储的数据大都以GB为基准衡量,几十GB就已经非常庞大。而现在,只广东移动每个月新增的数据量,就已经以TB衡量,不出3年,很多企业要存储的数据就要达到PB级。数据量越来越大,需要更大的数据库做支撑,这就是数据库的发展方向之一。另一方面,数据库也会越来越小。现在,Sybase的数据库已经安装在高档的Casio手表中了,这些手表中记录的有天气情况、气压、佩带者的血压、心跳等数据。这种数据库并不要求数据存储量大,但是要求在低计算量的情况下反应快,而且能够适应外界环境的变化。
二是存储方式从行到列的改变。以前数据库都是以行的形式存储的,理由很简单,用户需要的是对单条数据的读取和存储。而现在,单纯的数据记录已经不足以支撑企业发展了,企业更需要的是数据分析和决策支持。那么,单纯看一条记录没有任何意义,而是要把所有数据的某一项都统计出来进行分析,这就是列的概念。以中国移动为例,上亿个用户,每个月上TB的数据,哪些是VIP用户,该如何根据他们的需求提供专有服务,对于那些动感地带的用户,到底应该制定哪些优惠政策,除了看话费,是不是还能挖掘出他们的消费特点,进行更有针对性的业务推广活动?这些,就不是看一条数据的问题,而需要频繁对列进行操作。我预计,不出半年,各大数据库厂商都会推出以列为存储方式的数据库。
三是非结构化数据仍然不能纳入数据库中。说到这里,可能大家都认为我在逆潮流而动,现在很多数据库厂商都可以接受图像、视频等非结构化数据了,Sybase怎么还要死守着结构化数据呢?其实我认为,非结构化数据要想进入数据库,仍然需要结构化,只是这种结构化的方法各厂商不一样,而且相比以前有了很大的进步和提高。以前我们图片的记录方式是记录它的文件名,如果文件名中提到了某个人的名字,那么在整个数据库查询的时候,就可以把这个图片找到。而这是非常不科学的,因为很多非结构化数据的文件名起的并不可能完全。那么,现在大家把非结构化的数据变得结构化,其实就是在用结构化的数据描述这张图片,比如用点和位置来记录这张图片的每个像素。而一旦需要做查询的时候,可以根据像素的组合记录来比对,把符合比对要求的数据全部筛选出来。这样就把非结构化数据以结构化的方式纳入数据库中了,并能接受查询、检索等操作。
四是数据库和数据仓库会分开。很多数据库厂商认为,数据库一个就行,一专多能,既能用它进行实时交易,也能用它来进行数据分析。但是,其实很多用户现在在前台需要数据库提供实时交易功能,需要有很快的响应速度,而在后台,则需要设立一些规则进行数据分析和商务智能分析。Sybase就认为,这两个数据库应该是两种格式,毕竟它们的功能不一样。因此,从产品设置上,Sybase有交易型数据库和分析型数据库两种。
事实上,30年来,数据库也在不断发展进步。这些预测都是方向性的,不同的企业肯定会有不同的理解,用户的选择是最终的评判标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18