京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用大数据管理工具来满足用户期望
随着移动化进程,社交网络以及云技术要求应用软件来处理越来越多的基于Web的大量信息,并且这些信息需要实时处理与访问。这一趋势为需要使用大数据管理工具从海量信息以及他们的处理中获取价值的企业创造了环境。
大量实例显示数据的实时访问能够给企业带来经济利益。例如,零售商与移动运营商能够一起合作,对大量消费者的购买方式以及人口统计资料数据进行分析,从中挖掘有价值的信息。掌握了消费者购买习惯的信息,如果消费者出现在零售商店附近,那么他就可以选择向消费者的移动端推送商品优惠券。
译者注:关于零售商如何知道消费者就在商店附近,是利用移动运营商基站提供的信息。消费者的移动端末时刻都在与移动运营商基站通讯,所以移动运营商随时都掌握着所有移动端末的位置信息。
使用大数据管理工具
虽然企业有多种途径可以决定采取,但如果想要从大数据中获取最大的价值,那么可能需要在技术以及流程上有所改变。例如,无论是否存在访问高峰流量,用户都期望实时的响应。红帽高级产品市场经理Christina Wong说:“如果想要牢牢抓住顾客,那么企业不能再像以前那样运行他们的程序,必须改变其运行方式。”
Hurwitz& Associates公司创始合伙人及首席运营官Marcia Kaufman表示,通过分布式计算能够改善其可扩展性的重要性。Kaufman说:“如果你无法应付速度的问题,那无论你的应用程序有多先进,整个系统的运行效率也会降低。”
一些企业开始转向于大数据管理工具,例如利用内存数据网格(IMDG),来掌握海量数据,并且让应用程序保持竞争力。分布在多台服务器上的内存数据网格,能够在提升访问速度的同时,对数据进行优化。Kaufman说:“数据网格非常有用,因为它不仅能够与传统的关系型数据库进行集成,而且可以跟NoSQL、流数据相结合。”
使用传统方法搭配非传统技术也许不是满足现代化应用需求的最佳方式。除了通过内存数据网格(IMDG)来加速数据访问之外,Kaufman表示企业也在开始使用网格技术作为主存储,或者作为传统环境的一个支持层。
尽管实施一个新的大数据管理工具可能看起来像是一个非常艰巨的任务,但对于那些对内存数据网格不熟悉的用户会惊讶于它的易用性。使用内存数据网格并不像人们想象的那样复杂,Wong指出。“事实上数据网格技术的门槛是非常低的”。她说:“你不用对整个IT基础设施进行重建,它是一个补充技术”。
理解大数据
尽管大数据无疑能够为企业创造更多的机会,但它能帮助我们达到什么样的高度,我们也不能太高估。Progress DataDirect公司的数据协作与整合专家Tony Fisher表示,“大数据本质上是“脏”数据,它不是高质量的数据。我们在传统数据管理中所遇到的问题,在大数据上都会遇到。”信息仍然需要与企业的其他部分进行整合。
一些IT专业人士认为,大数据与传统的数据并没有太大的区别,但是Fisher却不完全同意这一观点。他认为如果一个企业在大数据涌入之前没有一个良好的数据基础管理策略,那么管理大数据将会为他们带来更大的挑战。
在一个企业经历任何形式的大数据项目之前,Fisher认为需要仔细考虑你想要达成的目的是什么? 收集数据会耗费大量的时间和精力,但如果没有考虑好如何解决本文所描述的问题,那么企业无法将大数据转化成任何有价值的信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04