
大数据:仅仅是传统商业智能的花哨标签
根据所有主要分析公司的分析,大数据应该是各大公司议程的首要主题之一。但是,到底什么是大数据?它和传统的数据管理和商业智能有什么不同之处呢?
“思考这个问题的一种方法是考虑汽车行业”,甲骨文公司数据库服务器技术高级总裁Andy Mendelsohn建议到。他指出:“100年前,Henry Ford 发明了T型车。现在,Ford仍然在制造汽车,这些车拥有更好的引擎、全面的传感器和计算机系统。但是在今天结束时,它们的本质仍然是汽车,尽管在过去的100年里,汽车已经改变了很多。人们应当以同样的方式看待大数据。”
“今天,我们拥有基于商业智能的信息系统,人们称它们为数据超市和数据仓库,它们正在从我们的事务处理系统(比如E-Business Suite和其他应用程序提供商)中加载所有的事务信息。而这些有关事务数据的信息是具有真正的价值,它们是公司皇冠上的宝石,它们也不会消失。”
但是,Mendohlson认为,人们现在想利用大数据做的事情只是捕捉各种新型的信息,用以增强和丰富他们目前正在使用的事务信息。“例如,如果你是一个零售商,你可能想到Facebook上,从愿意和你做朋友的客户的Facebook页面中提取信息。其中的大部分的信息都是毫无价值的,是这样吗?所有的婴儿和家庭图片以及类似的东西对你来说都是无用的,你不想把它们保存在你的关系数据库中。但事实上,那些刚刚有了婴儿的人正是零售商所感兴趣的,对不对?零售商可以使用这些信息向上销售婴儿奶瓶、婴儿玩具等一切和婴儿有关的东西。”
因此,对于大数据最重要的是要理解:大数据中存在很多这样的数据,它们中的大部分都是毫无价商业值的,但是同样存在一些宝石,一些有价值的信息,就像上面提到的客户刚刚生了一个孩子的信息一样。你希望得到那些有用的信息,把它们集成到现有的数据仓库的事务数据中并且使用它们做出更好的决策,使公司赚更多的钱。
实践中的大数据
理论上就是这样。然而这在实践中会和客户产生共鸣吗?Mendelsohn列举了三个客户良好的进行实践的例子,他表示这些例子表明确实如此,即客户产生了共鸣。
第一个客户是一家保险公司。“保险是一个我们都很了解的行业。我们都有汽车保险”,他表示:“这种特殊的客户已经有了一个Exadata数据仓库,他们已经捕获了所有与他们顾客相关的事务保险信息:顾客的意外,顾客的政策信息等等。”
他们希望做的是用新的类型的数据增强Exadata,这些新类型的数据可以从汽车获得。现在的汽车上面都装有传感器,可以捕捉你的每一个动作,这种信息被称作汽车远程信息处理数据。他们希望做的是使用该信息实际学习顾客的实际驾驶行为并利用这些数据更好的理解顾客的保险率应该是多少,顾客有什么驾驶习惯,甚至可以帮助顾客更好的驾驶汽车。这实际上是一个非常经典的使用案例。因此他们对用BDA、大数据应用扩展他们的Exadata很感兴趣。
下一个客户是一家旅游公司。“该公司运营着帮助客户查找各种各样旅行信息的网站”,Mendelsohn解释道:“当然,今天他们已经捕捉了他们的客户的所有事务信息,客户选择了哪些行程等。”
“他们希望做的是扩充记录了网站上发生了什么事情的信息。他们希望捕获网络日志,得到社会媒体的数据,用来更好的了解客户的取向,了解客户期待着哪些可能正在进行的旅行,并且合并这些信息和现有的以往的客户事务信息,然后使用它们做出更好的优惠政策,实现业务的增长。”
最后一个客户是一家游戏公司。“游戏产业正成为一个巨大的产业”,Mendelsohn表示:“这家公司的业务是出售各种游戏机和网络游戏,而且他们已经有了一个很大的Exadata数据仓库并且已经分析了其中的信息。他们正在寻求使用BDA扩充Exadata数据仓库,他们还希望使用这些数据了解顾客的期望:更好的了解顾客在游戏中的行为。”
“他们希望了解顾客之间的关系。在游戏中真正有趣的事情之一是人们在一块玩游戏。你会想了解人们在其中相互互动的社交网络,因为当网络中的某个人想做某件事情时,别人可能会做同样的事情。这样游戏公司就可以利用这些信息带来更好的关于游戏的向上销售信息。”
所以整体而言,Mendelsohn的结论是,游戏行业存在着很多利害关系。“这是一个真正的发展了的技术”他指出:“客户拥有现有的属于他们自己的大型BI信息系统,数据仓库、数据超市,真正令他们兴奋地是使用这些大数据扩充他们的业务数据,以帮助他们实现业务增长。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17