京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:仅仅是传统商业智能的花哨标签
根据所有主要分析公司的分析,大数据应该是各大公司议程的首要主题之一。但是,到底什么是大数据?它和传统的数据管理和商业智能有什么不同之处呢?
“思考这个问题的一种方法是考虑汽车行业”,甲骨文公司数据库服务器技术高级总裁Andy Mendelsohn建议到。他指出:“100年前,Henry Ford 发明了T型车。现在,Ford仍然在制造汽车,这些车拥有更好的引擎、全面的传感器和计算机系统。但是在今天结束时,它们的本质仍然是汽车,尽管在过去的100年里,汽车已经改变了很多。人们应当以同样的方式看待大数据。”
“今天,我们拥有基于商业智能的信息系统,人们称它们为数据超市和数据仓库,它们正在从我们的事务处理系统(比如E-Business Suite和其他应用程序提供商)中加载所有的事务信息。而这些有关事务数据的信息是具有真正的价值,它们是公司皇冠上的宝石,它们也不会消失。”
但是,Mendohlson认为,人们现在想利用大数据做的事情只是捕捉各种新型的信息,用以增强和丰富他们目前正在使用的事务信息。“例如,如果你是一个零售商,你可能想到Facebook上,从愿意和你做朋友的客户的Facebook页面中提取信息。其中的大部分的信息都是毫无价值的,是这样吗?所有的婴儿和家庭图片以及类似的东西对你来说都是无用的,你不想把它们保存在你的关系数据库中。但事实上,那些刚刚有了婴儿的人正是零售商所感兴趣的,对不对?零售商可以使用这些信息向上销售婴儿奶瓶、婴儿玩具等一切和婴儿有关的东西。”
因此,对于大数据最重要的是要理解:大数据中存在很多这样的数据,它们中的大部分都是毫无价商业值的,但是同样存在一些宝石,一些有价值的信息,就像上面提到的客户刚刚生了一个孩子的信息一样。你希望得到那些有用的信息,把它们集成到现有的数据仓库的事务数据中并且使用它们做出更好的决策,使公司赚更多的钱。
实践中的大数据
理论上就是这样。然而这在实践中会和客户产生共鸣吗?Mendelsohn列举了三个客户良好的进行实践的例子,他表示这些例子表明确实如此,即客户产生了共鸣。
第一个客户是一家保险公司。“保险是一个我们都很了解的行业。我们都有汽车保险”,他表示:“这种特殊的客户已经有了一个Exadata数据仓库,他们已经捕获了所有与他们顾客相关的事务保险信息:顾客的意外,顾客的政策信息等等。”
他们希望做的是用新的类型的数据增强Exadata,这些新类型的数据可以从汽车获得。现在的汽车上面都装有传感器,可以捕捉你的每一个动作,这种信息被称作汽车远程信息处理数据。他们希望做的是使用该信息实际学习顾客的实际驾驶行为并利用这些数据更好的理解顾客的保险率应该是多少,顾客有什么驾驶习惯,甚至可以帮助顾客更好的驾驶汽车。这实际上是一个非常经典的使用案例。因此他们对用BDA、大数据应用扩展他们的Exadata很感兴趣。
下一个客户是一家旅游公司。“该公司运营着帮助客户查找各种各样旅行信息的网站”,Mendelsohn解释道:“当然,今天他们已经捕捉了他们的客户的所有事务信息,客户选择了哪些行程等。”
“他们希望做的是扩充记录了网站上发生了什么事情的信息。他们希望捕获网络日志,得到社会媒体的数据,用来更好的了解客户的取向,了解客户期待着哪些可能正在进行的旅行,并且合并这些信息和现有的以往的客户事务信息,然后使用它们做出更好的优惠政策,实现业务的增长。”
最后一个客户是一家游戏公司。“游戏产业正成为一个巨大的产业”,Mendelsohn表示:“这家公司的业务是出售各种游戏机和网络游戏,而且他们已经有了一个很大的Exadata数据仓库并且已经分析了其中的信息。他们正在寻求使用BDA扩充Exadata数据仓库,他们还希望使用这些数据了解顾客的期望:更好的了解顾客在游戏中的行为。”
“他们希望了解顾客之间的关系。在游戏中真正有趣的事情之一是人们在一块玩游戏。你会想了解人们在其中相互互动的社交网络,因为当网络中的某个人想做某件事情时,别人可能会做同样的事情。这样游戏公司就可以利用这些信息带来更好的关于游戏的向上销售信息。”
所以整体而言,Mendelsohn的结论是,游戏行业存在着很多利害关系。“这是一个真正的发展了的技术”他指出:“客户拥有现有的属于他们自己的大型BI信息系统,数据仓库、数据超市,真正令他们兴奋地是使用这些大数据扩充他们的业务数据,以帮助他们实现业务增长。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04