京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:仅仅是传统商业智能的花哨标签
根据所有主要分析公司的分析,大数据应该是各大公司议程的首要主题之一。但是,到底什么是大数据?它和传统的数据管理和商业智能有什么不同之处呢?
“思考这个问题的一种方法是考虑汽车行业”,甲骨文公司数据库服务器技术高级总裁Andy Mendelsohn建议到。他指出:“100年前,Henry Ford 发明了T型车。现在,Ford仍然在制造汽车,这些车拥有更好的引擎、全面的传感器和计算机系统。但是在今天结束时,它们的本质仍然是汽车,尽管在过去的100年里,汽车已经改变了很多。人们应当以同样的方式看待大数据。”
“今天,我们拥有基于商业智能的信息系统,人们称它们为数据超市和数据仓库,它们正在从我们的事务处理系统(比如E-Business Suite和其他应用程序提供商)中加载所有的事务信息。而这些有关事务数据的信息是具有真正的价值,它们是公司皇冠上的宝石,它们也不会消失。”
但是,Mendohlson认为,人们现在想利用大数据做的事情只是捕捉各种新型的信息,用以增强和丰富他们目前正在使用的事务信息。“例如,如果你是一个零售商,你可能想到Facebook上,从愿意和你做朋友的客户的Facebook页面中提取信息。其中的大部分的信息都是毫无价值的,是这样吗?所有的婴儿和家庭图片以及类似的东西对你来说都是无用的,你不想把它们保存在你的关系数据库中。但事实上,那些刚刚有了婴儿的人正是零售商所感兴趣的,对不对?零售商可以使用这些信息向上销售婴儿奶瓶、婴儿玩具等一切和婴儿有关的东西。”
因此,对于大数据最重要的是要理解:大数据中存在很多这样的数据,它们中的大部分都是毫无价商业值的,但是同样存在一些宝石,一些有价值的信息,就像上面提到的客户刚刚生了一个孩子的信息一样。你希望得到那些有用的信息,把它们集成到现有的数据仓库的事务数据中并且使用它们做出更好的决策,使公司赚更多的钱。
实践中的大数据
理论上就是这样。然而这在实践中会和客户产生共鸣吗?Mendelsohn列举了三个客户良好的进行实践的例子,他表示这些例子表明确实如此,即客户产生了共鸣。
第一个客户是一家保险公司。“保险是一个我们都很了解的行业。我们都有汽车保险”,他表示:“这种特殊的客户已经有了一个Exadata数据仓库,他们已经捕获了所有与他们顾客相关的事务保险信息:顾客的意外,顾客的政策信息等等。”
他们希望做的是用新的类型的数据增强Exadata,这些新类型的数据可以从汽车获得。现在的汽车上面都装有传感器,可以捕捉你的每一个动作,这种信息被称作汽车远程信息处理数据。他们希望做的是使用该信息实际学习顾客的实际驾驶行为并利用这些数据更好的理解顾客的保险率应该是多少,顾客有什么驾驶习惯,甚至可以帮助顾客更好的驾驶汽车。这实际上是一个非常经典的使用案例。因此他们对用BDA、大数据应用扩展他们的Exadata很感兴趣。
下一个客户是一家旅游公司。“该公司运营着帮助客户查找各种各样旅行信息的网站”,Mendelsohn解释道:“当然,今天他们已经捕捉了他们的客户的所有事务信息,客户选择了哪些行程等。”
“他们希望做的是扩充记录了网站上发生了什么事情的信息。他们希望捕获网络日志,得到社会媒体的数据,用来更好的了解客户的取向,了解客户期待着哪些可能正在进行的旅行,并且合并这些信息和现有的以往的客户事务信息,然后使用它们做出更好的优惠政策,实现业务的增长。”
最后一个客户是一家游戏公司。“游戏产业正成为一个巨大的产业”,Mendelsohn表示:“这家公司的业务是出售各种游戏机和网络游戏,而且他们已经有了一个很大的Exadata数据仓库并且已经分析了其中的信息。他们正在寻求使用BDA扩充Exadata数据仓库,他们还希望使用这些数据了解顾客的期望:更好的了解顾客在游戏中的行为。”
“他们希望了解顾客之间的关系。在游戏中真正有趣的事情之一是人们在一块玩游戏。你会想了解人们在其中相互互动的社交网络,因为当网络中的某个人想做某件事情时,别人可能会做同样的事情。这样游戏公司就可以利用这些信息带来更好的关于游戏的向上销售信息。”
所以整体而言,Mendelsohn的结论是,游戏行业存在着很多利害关系。“这是一个真正的发展了的技术”他指出:“客户拥有现有的属于他们自己的大型BI信息系统,数据仓库、数据超市,真正令他们兴奋地是使用这些大数据扩充他们的业务数据,以帮助他们实现业务增长。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05