
大数据正在改变每一个行业
亚马逊首席技术官Werner Vogels表示:“你拥有的数据永远不够多,数据越多对于企业的好处就越多。”
亚马逊绝对算是大数据领域的先驱,但事实上,所有行业都正在享受收集和分析数据带来的优势。
制造业、医疗保健业、农业、零售业等,每个活动收集的数据(无论是看似多么微不足道的数据)都意味着更多的机会来调整流程和运营,以尽可能地提高工作效率。
不同的行业在以不同的方式来响应大数据趋势。零售业和销售行业将会依赖于尽可能多地收集关于其客户生活的信息,而在制造业,重点则是精简运营。
设备校准设置可以被记录和调整,而受监控的产品存储环境则可以确定如何确保最小的损坏和浪费。
对于全球性大型企业而言,这可能意味着收集和分析来自世界各地的工厂的数据,从而对其中的差异进行研究。
例如,去年制药巨头公司Merck使用数据分析大幅减少了废物量,这些废物主要是由于制造环境及条件的差异所造成。
这个数据分析耗时三个月,对来自550万疫苗批次的生产数据进行了150亿次计算。这让他们可以发现发酵过程中的最佳条件,在FDA已经批准了对生产过程的这种改变后,这帮助他们大大提高了产量。
在汽车行业,汽车研究中心在最近的报告中将通过先进的IT解决方案和大数据带来的改进成为“创新引擎”。
该报告强调了不断增长的汽车和行业复杂性是制造商面临的最大挑战,并指出了通过技术和数据分析解决这些挑战的方法。
制造过程中每台机器的效率可以记录下来,企业就可以了解运行情况,并在需要的地方做出改进。
而在农业,数据分析正在帮助该行业解决提高世界粮食60%的挑战,预言家称,由于不断增长的人口,到2050年我们将需要这么多的粮食。
John Deere将传感器部署在其拖拉机和农业机械,让人们可以在myjohndeere.com和Farmsight服务读取相关数据。这些可以帮助农民创造庄稼生长的最佳条件,同时让John Deere预测对备件的需求。
在产品制造(或生成)后,需要被销售和分销。大型零售商收集的关于客户的PB级数据可以让他们知道哪些人想要购买这些产品,这些客户在哪里。
亚马逊利用其S3系统来追踪分散在世界各地的几十个仓库和配送中心的库存情况。操作工可以实时追踪来查看什么货物在哪里,它应该被送去哪里。
大型供应商进行的这种大的改进将会影响企业供应链,亚马逊允许其他企业授权这种技术来帮助其运作。随着时间的推移,中小型企业将会发现他们也可以使用行业领导者正在使用的工具。
通过销售,零售商可以使用数据来确定库存应该显示在哪里,哪些商店某种特定产品卖得最好,并追踪客户的情况。会员卡并不是新鲜事,但可以帮助对客户的习惯进行分析,同时能够帮助分析客户的购买趋势。这种数据分析让亚马逊相信他们很快就能够预测客户将会购买什么,以至于在客户下单之前就准备好足够的库存来发货。换句话说,他们将对他们的系统有足够的信心,他们相信这种先发制人的订单所带来的利润将会超过来回邮寄的成本。
物联网将会带来更多改进,随着设备学会互相沟通和合作,给世界带来更多连接。本周,思科宣布为致力于提高虚拟和物理世界之间整合的初创公司提供1.5亿美元的基金。
对于企业而言,让其生产、库存控制、配送和安全系统完全连接,并让它们互相通信,将意味着更高的效率和更少的浪费。
GE将这种数据和机器的融合成为“工业互联网”,并声称这可以帮助全球行业节省1500亿英镑。
各行各业都正在享受大数据分析带来的好处,我们相信,在可预见的未来,寻找收集、记录和分析数据的创新方法将是企业的重要工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29