
大数据应用如何来推动配电网发展
配电网建设是推进电网智能化的重要内容,也是大数据在电网企业应用的重要舞台,配电网处于电力系统的末端,具有地域分布广、电网规模大、设备种类多、网络连接多样的鲜明特点,配电网信息系统每天都在产生TB级以上数据,已达到大数据级别,通过加以应用,可更好地支撑配网业务快速发展。配网大数据有其自身特性相对于一般大数据来说,配电网大数据具有属于自身的特征。
从来源系统来讲,配网大数据来源覆盖了调度、检修、营销等多个业务领域,以及绝大部分110千伏及以下多电压等级的电网监控和采集信息,具有数据类型繁多、数据变化速度快、数据量巨大、价值密度低等特征。从数据源类型来讲,配网大数据覆盖了配变、配电变电站、配电开关站、电表、电能质量等配用电自动化和信息化数据,以及用户数据和社会经济等数据。就配网大数据而言,大数据的应用方向可归纳为以下三个方面。首先,采集终端数量剧增导致数据采集入库、存储的压力剧增,基于传统技术方案无法满足每秒数万甚至数十万的高吞吐量数据存取要求。基于大数据技术构建经济的分布式文件系统、分布式数据库,利用消息队列、流计算、分布式数据采集等技术可实现数据高效采集。其次,随着业务的发展,系统对外数据发布频度小于15分钟/次。而基于传统的数据分析技术,很难在规定的时间内完成海量数据的分析统计及发布,基于内存计算、高并发分布式计算、并行计算等大数据技术,可实现海量数据的快速处理。最后,现有配网数据应用局限于单一业务领域、小样本数据开展,缺乏业务全领域、全量数据分析,缺乏深层次分析,数据价值挖掘不充分,所以,可利用大数据分析挖掘技术,开展全方位的配网核心业务分析挖掘。应用实践初见成效为提升配网数据的处理和利用效率,在大数据应用的基础上,首先要支撑配网数据高效采集和存储,进而才能开展各类高级分析应用。在该方面,公司在配变重过载预警分析和配网项目全过程管控上的实践,取得了初步成效。
近年来,按照“做强主网、做优配网、做实农网”工作思路,公司持续加大配网投入,使得配网网架结构逐步优化,但是配网项目管理不到位、配网建设质量和运维管理水平参差不齐,造成配网供电能力与用电需求水平的矛盾还较为突出。局部地区特别是城乡结合部配变重过载现象依旧严重,供电“卡脖子”、频繁停电、低电压和抢修服务等仍是客户投诉的焦点问题,都制约着配网管理和供电服务质量的提升。配变重过载预警是在综合用电采集系统、生产管理系统以及营销业务应用等系统配变负荷信息、配变基本信息、用户用电等信息的基础上,结合外部气象信息,通过构建中期预警模型和短期预警模型,实现配网重过载总体分析应用,合理优化配网变压器重过载,进而提升配网供电能力。与业务部门单一的基于阈值方法进行监测预警分析或依据人工经验预判相比,基于大数据挖掘技术的配变重过载预测分析,能够更加准确、及时地预判末来一段时期内配变重过载情况。
目前,短期重过载预警模型准确度已可达到80%左右,中期重过载预警模型准确度也可达到70%左右,较以往人工经验预判准确度提升约5倍左右,最大程度降低了配变重过载水平,减轻了配变重过载带来的不良影响,提升了配网供电能力。在配网项目全过程管控方面,大数据应用的促进作用也十分明显。配网工程具有项目多、规模小、时间紧、工期长等特点,同时,配网工程项目管理协同点多、交叉面广,关键流程环节执行效率不高,不但带来管理效率上的问题,还会给企业依法经营带来风险。为提升公司配网工程项目的执行效率,掌握配网工程项目推进情况,快速定位项目执行过程存在的问题,推动项目关键流程环节执行效率提升,基于大数据技术的配网项目全过程管控起到了关键性作用。这一工作的主要做法是立足生产管理系统、配网协同设计平台、ERP等配网项目相关管理系统,采取“全面覆盖、重点突破”的原则,从效率、效益、数量、预告警等维度,以“项目前期”为开始,“项目关闭”为结束,分“现场施工”和“预算执行”两条主线,采用关联监测、比对监测、穿透分析等方法,开展配网项目全过程的实时进展情况分析,定位异动的流程环节。
大数据的应用,从效率、合规等多角度出发,形成多层次、多维度、精细化的指标综合预警模式,推动了配网项目数据的挖掘和使用,增加了配网工程项目管理的透明度。通过配网项目全过程的在线监测分析,发现了项目执行异动和问题,得到公司主要领导和专业部门的高度认可,有力提高了配网工程项目的执行效率。目前,配网项目业务预算完成率较模型上线前提升了24个百分点。数据价值仍待深入挖掘
在一流配电网建设运营方面,大数据应用前景广阔,但目前,现有配网方面大数据应用仍处于起步阶阶段,数据价值还有待进一步挖掘。
面向“十三五”,为充分发挥信息通信新技术在智能电网中的核心技术作用,统筹推动智能电网技术变革和创新发展,国家电网公司制订了智能电网行动计划,其中就包含了大数据技术在智能配用电领域的应用规划。随着配电网建设工作的不断推进,下阶段将会涌现更多的智能配用电领域大数据应用需求。通过大数据技术,我们可在配网运行监测数据实时采集处理效率的提升与综合分析、配网低电压治理、配网停电优化、配网故障诊断与辅助规划等方面开展数据应用,深入挖掘配网数据资产价值,逐步实现大数据对配电网建设运营的关键支撑作用。随着电网不断升级,大数据应用在配电网建设中前景广阔。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07