
国家电网大数据战略优势及应用领域分析
作为国家战略,大数据已成为国家下一个创新、竞争和发展的前沿,也必然成为企业提升核心竞争力的战略制高点。
中国信息通信研究院近期发布的《2015年中国大数据发展调查报告》预测,今年中国大数据市场规模将达到115.9亿元,增速达38%;预计2016年至2018年中国大数据市场规模还将维持40%左右的高速增长。
今年1月,国家电网公司正式启动企业级大数据平台的研发和试点工作。目前,大数据技术已经在电网运行、经营管理、优质服务三大业务领域得到广泛应用,推动国家电网从“业务驱动”向“数据驱动”转变。
优势在哪里
电网业务数据大致分为三类:一是电力企业生产数据,如发电量、电压稳定性等方面的数据;二是电力企业运营数据,如交易电价、售电量、用电客户等方面的数据;三是电力企业管理数据,如ERP、一体化平台、协同办公等方面的数据。
国网智能电网研究院的数据显示,截至去年年底,国家电网公司管理结构化数据49.75TB,非结构化数据213TB,营销基础数据130TB,用电信息采集数据达43TB,且信息化数据平均每天以10TB的速度增长。
国家电网公司信息通信部主任王继业表示,研究和应用大数据是提质增效和推动电网发展方式、公司发展方式转变的迫切要求。国家电网公司“三集五大”体系和坚强智能电网建设,积累了体量大、类型多、价值高、速度快等典型大数据特征的运营数据,具备了推广大数据应用的基础条件。
应用哪些领域
电网运行。以推动智能电网创新发展为出发点,积极推进大数据技术在智能电网发、输、变、配、调、用六大环节的广泛应用。
经营管理。以促进公司经营管理模式创新发展为出发点,积极推进大数据技术在电网规划、配网运行、运营监测和人财物集约化管理等方面的广泛应用。
优质服务。以促进优质服务能力提升和新型业务形态发展为出发点,积极推进大数据技术在智能电表增值服务、电动汽车运营管理和需求侧管理等方面的广泛应用。
试点效果怎么样
国网山东电力:借助大数据的预警、监测和分析,今年1月至6月,全省10千伏线路故障停电同比下降30.1%,延期送电同比下降70.8%;全省开展配网不停电作业84734次,同比增长171%,多供电量2.7亿千瓦时;深化配电自动化实用化应用,馈线自动化正确动作784次,分界开关正确动作1237次,减少停电23.4万时˙户。
国网江苏电力:以用户信息采集数据为样本,开展负荷预测工作。今年4月份,江苏电力用大数据预测8月6日将迎来今年最大负荷值8440万千瓦,实际上在8月5日出现了最高负荷值8480万千瓦,预测准确率99.53%。
国网福建电力:通过对城区配变负荷、设备、客户以及气温数据的挖掘分析,开展城网配变重过载预警分析场景应用,识别出52台新增重载配变、13台新增过载配变,预警准确率超过80%。
国网客户服务中心:目前,客服中心日均处理话务请求量35万余件。为进一步提高人工服务接通率,减少客户的等待时间,客服中心依托大数据技术,建立了“实时话务展现及预测”“基于故障事件用户感知度的主动服务”等场景应用,工作效率显著提升。例如,通过应用实时话务展现及预测场景,人工服务接通率提升了8%左右,服务效率和效果进一步得到优化。
下一步应用重点
2015年~2016年,国家电网公司将完成企业级大数据平台设计研发工作,并在总部及26家省公司部署实施。
到2020年,国家电网公司将在现有一体化信息平台基础上,建成总部和省公司两级部署的具有国际先进水平的基于云架构的企业级大数据平台,大数据成为推动智能电网创新发展的关键核心技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10