
大数据为你揭开A股的十个秘密规律
1、收盘前上涨概率较高
统计数据表明,2009年1月至2015年9月期间,指数日内呈现上涨趋势,低开高走:午前的市场基本呈现下跌现象,午后市场好转,尾盘拉升较为明显。尤其是,尾盘前几分钟,市场会有较为明显的上涨,其上涨的概率也急速提升。
对比指数每五分钟的涨跌幅发现,午盘收盘前和全天收盘前,市场呈现较高概率的上涨,上涨概率高达60.3%和79.1%。
结论:尾盘上涨现象与市场交易机制有较大关系,例如尾盘市场资金情况、机构集中建仓、以及大宗交易的影响。但综合而言,对该现象的产生,目前尚没有完美的解释。
2、周一上涨概率大
统计每周的交易时间发现,周一上涨的概率和幅度最大。分段统计后发现,牛市期间,股市在周一上涨的幅度较大,而熊市中这种现象不明显。
“周一更容易上涨现象”在美国等成熟市场则并不明显,这很可能是由于成熟市场投资者情绪化不明显造成的。但是,在当前情绪化仍然爆棚的A股,牛市的情绪显然更容易在假期被点燃。
周一出现极端涨跌幅的概率较高,这也与市场预期有关。例如投资者未预期到的周末市场数据和突发事件出现,或者预期落空带来的市场波动,在我国以散户为主的市场中,这种市场情绪波动更大。
统计月度数据发现,我国资本市场的上半月效应明显。而这种现象,与SHIBOR短端利率上半月较低的统计规律遥相呼应。
3、四月份要卖
“SellInmayandgoaway”是一句广为流传的股市谚语,指的是股市在经过5月份后,市场就开始疲软,投资者在5月就可以获利了结。
通过随机测算上证综指的投资收益率:在每年任意时间买入指数,在之后任意时间卖出获利。发现年初买入、四月卖出获得正收益的概率最大。同时对比美国标普500指数,此期间交易带来的正收益概率也是最大的。
同时,美国的长期投资价值凸显,从年度随机投资收益的分布来看,均显示最长时间的持股,投资收益最高。对比标普500的指数的长期走势,发现标普500指数的价值是通过时间来检验的,持有时间越长,收益越高。
如果从月度涨跌幅的角度去看市场,上证综指和标普500指数均在上半年取得比较好的正收益,上涨的概率较高,而进入6月份后,市场的回报率和上涨概率均下行。
4、牛市波动增强
用两种方法来表示股票市场的波动,日内分钟收益率的标准差和开盘收盘价格波幅。
从日内分钟数据的标准差来看,在上证综指的阶段性顶点时,市场的波动显著增强,而这种现象在市场趋势性上涨的尾端更为明显。
从开盘收盘价格的波幅来看,波动带来的规律并不如上一种方式明显。
但对开盘收盘的价格进行了策略化处理后,回测其效果即:高开买进、低开卖出的双向操作。
回测结果显示,这样的策略长期表现要好于指数,但其效果存在失效期。用同样的方法测试了沪深300股指期货主力合约,策略失效同样存在,其长期效果尚可,年化回报率为12.2%。
对波动的日历效应的检测数据表明,其分钟数据收益率的标准差并无明显的日历效应,而开盘收盘价个波幅表现出与指数类似的分布规律。
5、春节前后上涨概率大
每当长假来临,持币过节还是持股过节的问题,都会备受投资者关注。
研究结果表明,在节前五个交易日,节后七个交易日里,上证综指表现较好。在迄今为止的22个春节前后,上证综指上涨次数为18次,上涨概率高达81.81%,涨跌幅的中值为3.19%,均值为3.72%。春节效应比十一效应更加明显,持续时间更长、平均上涨幅度更大。
在十一长假之前的三个交易日和假日之后的两个交易日,上证综指表现较好。在16次十一长假前后,上证综指有11次上涨,上涨概率为68.75%,指数涨跌幅的中值为1.87%,均值为1.05%。由此可见,在十一假日前后,指数上涨的概率较大,十一效应在A股市场中较为明显。
整体而言,我国的假期效应明显,尤其是春节效应,其持续时间和涨幅都比较高。
统计标普500指数的圣诞节效应,发现同样存在节日效应,尤其是在圣诞节之后,市场表现相对较好。
6、均线系统仍有效
技术分析在我国股票市场应用依然较为广泛,而技术分析的有效性,也是广大投资者争论不休的事情。
用均线交易策略,来检验全球主要资本市场的综合指数,寻找技术分析是否有效。
回测结果显示,在多数发展比较完善的资本市场,例如美国,日本、英国、法国,均线系统下的技术分析已经失效,而新兴市场国家和地区依然有效,而且德国DAX30指数有效性也较强。
结论:技术分析存在有效期,随着市场的发展,其有效性逐步减弱。因为,技术分析这种“想让所有人通过简单技术指标来挣钱”的策略,肯定不会让所有人都挣钱。如果某种指标一旦给市场全面接受,那么它带来的超额收益将会被削弱。
值得一提的是,双均线系统的有效期,比单均线有效期要长久一些,或许这暗示着技术分析也要进行不断的演化,以适应市场的发展。
7、7倍PE肯定见底
资本市场有其自身规律,也有着估值的上下限。“树不会长到天上去”,脱离资本市场规律的事情不可能长久。
8、低价股收益率最高
对比A股的不同市场风格指数发现,在A股中,低估值个股,包括低市盈率和低市净率指数,长期走势均好于中、高估值品种,且其长期收益率要高于上证综指。在资本市场的长线低估值走势较好。
小盘股相对较高的成长性带来的收益,使得小市值公司整体超过大市值公司。
活跃股指数是所有风格指数中收益率最差的风格,热门个股或许不是一个好的投资策略。
低价股指数是所有风格指数中收益率最高的,这与我国投资者机构中,散户占比较多、且金融素养相对较差有关。
亏损指数的牛市中弹性高,但整体收益小于绩优股。
9、新股上市第一年收益欠佳
由于我国资本市场的结构和上市制度,导致上市公司在上市前报表的盈利能力较高,而一旦上市A股,其整体盈利能力开始下滑。
统计前五年上市公司的RoE分布表明,随着上市时间的延长,低盈利能力的公司开始增加,收益率的众数开始向较低的RoE水平倾斜。
对比上市公司不同年限的投资价值,上市第一年的投资收益并不好,其后明显好转。
10、金融板块行情独立
从行业的月度收益率出发,寻找行业之间的联动性。
数据显示,金融行业与其他行业的相关性最小,而在每个月上涨前五名的行业中,银行业出现的次数最多。
如果对比市场整体收益率,“综合”行业出现较高超越市场整体涨幅的概率较高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11