京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网智能电视行业将借大数据平台技术走出行业困境
2015年智能家电新品发布的频率,明显放缓。2020年将达万亿的智能家居市场“大饼”,也没能挽救多家上市公司当下的业绩于水火。由于缺乏统一标准,企业各自为政,难以形成整体生态,所以智能家居发展道路曲折。
不过,智能电视有望成为率先突破的细分领域。11月20日,智能家居大数据上市公司奥维云网公告,斥资600万元收购“勾正数据”公司20%的股权,希望未来三年内建设中国最具规模的智能电视用户大数据平台,这就是一个积极的信号。
为什么是智能电视?
国内智能电视的渗透率2015年已经达到70%~80%,而且它的优势在于大屏,成为家庭互联网的最大入口。中国有3.5亿个家庭,未来互联网电视的成长空间巨大。所以,这一两年“千军万马”都想跨界做互联网电视。
有人认为,2016年将是互联网电视大屏价值引爆的一年。奥维云网的董事长喻亮星也很认同:“明年会比2015年走得快”。因为每年1000多亿元的电视广告,已是现成的市场,未来部分电视广告将转化成互联网电视广告。
事实上,2015年海信、创维、TCL、乐视等,都号称分别有5000万元~7000万元左右的开机广告收入。即使这样,它们几个加起来就是几个亿,相比于电视广告一年千亿元的广告规模还是小,互联网电视的广告价值离真正的点爆还远。
挖掘电视大屏价值,还有两大现实的困难。
首先是缺乏数据支撑。喻亮星坦言,奥维就是想尽快把底层数据做出来,为互联网电视广告的精准投入做准确,因为客户并不愿意“闭着眼睛”投广告。
另一个难题是硬件的增值功能需完善。实现增值,要与软件、硬件环境相结合,这对电视的芯片、图像处理能力都有要求。据喻亮星介绍,2013年年底的智能电视产品才开始具有这样的增值能力,目前国内保有量才2000万~3000万台,且激活率只有一半,还分散在不同品牌里,所以目前广告价值暂时还不大。
不过,未来三年将快速增长,国内智能电视保有量将从2015年的8000万台到2018年突破2亿台。而大数据的能力,将是开采电视大屏价值的“锁匙”。
为此,奥维做了两件事情。一是装了奥维软件平台的电视用户,现在有100万台,喻亮星透露,通过与勾正的资源整合,到明年春节前会达到500万台。其次,奥维对接各大品牌的、可以投放广告的智能电视活跃终端已达2000多万台,覆盖TCL、创维、长虹、康佳、夏普、联想等品牌,“一旦我们达到3000万~5000万台,价值就会变大。”
彩电厂为什么愿意让奥维来做呢?喻亮星说,“一是我们的数据采集能力强;二是数据分析能力强;三是奥维天然是第三方,采用收入分成模式,不干扰彩电品牌自身的运营。”
大数据,近年已成为热词,但如何产生真正的价值,还需要实实在在的努力。
奥维此次参股勾正公司,揭开了其大数据布局的“冰山一角”。过去两年,奥维的大数据团队已增至40多人,并在大数据领域重金投入,去年投了500多万元,2015年又投了1000多万元。
其储备的大数据能力主要在五个方面:一是数据采集的能力,原来奥维跟全国大连锁合作,成本高、时间慢,现在通过爬虫技术,可覆盖门户网站、电商平台、社交平台等信息;二是云计算能力,原来处理20万条文本信息要2小时,现在只需20秒;三是应用场景的挖掘能力,凭借奥维对家电制造业、流通业和用户多年的研究经验,迅速找到大数据的应用场景;四是建立模型和数据挖掘的能力;五是可视化的能力。
“一定要把大数据落实到小的应用场景。”这是奥维云网的助理总裁韩昱的体会。
像2015年“双11”商战,已引入数据战。通过每五分钟监测一次价格变动,奥维可以提醒厂家锁定竞争对手的哪个型号,并建议用哪个产品型号去应对。“以前,奥维只是卖报告,企业看一下市场占有率就完了。现在,通过大数据,我们可以帮助企业,进行实时的决策。”
又如,以前产品创意,做4000个样本,要两个月,花80万~100万;现在利用大数据技术,每月收集10万条信息,2天采集、3天分析、5天出报告,成本只是原来的十分之一。
未来,PC端的视频、广告、游戏、电商、在线教育、精准营销等业务模式,都会延伸到互联网电视端,潜在的价值空间巨大。不只奥维,BAT、彩电巨头、互联网彩电新军、苏宁国美等,谁都想冲着这块“肥肉”来咬一口。
奥维希望搭建一个基于产品和用户的、开放式的大数据平台,并预言“家庭互联网用户大数据将是一个百亿元的蓝海市场”。同样可以预见的是,竞争也会异常激烈。喻亮星明确,尽管与厂商有竞合关系,奥维定位做中间环节,更多是通过数据帮助企业,服务好用户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13