京公网安备 11010802034615号
经营许可证编号:京B2-20210330
能源电力行业应主动适应和引领大数据变革
所谓引入大数据,是指建立面向大数据的生产与组织管理模式,这是每个行业的必然趋势。能源电力行业的信息化发展水平较高,有资本密集优势,是大数据应用的先行部门,应当主动适应和引领大数据变革。”中国人民大学环境政策与环境规划研究所副所长傅毅明在近日举办的企业协创平台建设与行业知识大数据应用研讨会上对记者表示。
大数据可在电改中“一展身手”
“大数据作为重要的生产要素,是能源电力行业发展转型的重要支撑。”傅毅明在接受记者采访时表示,一方面大数据能促进能源电力行业管理变革,提高能源资源配置效率,比如能耗(电力)在线监控系统的建设对于节能减排具有重要贡献。
另一方面是可以提高国民经济的监控能力,将能源电力系统的运行作为反映国民经济运行安全与效率的晴雨表。
据了解,电网的业务数据大致分为三类:一是像发电量、电压稳定性等方面的电力企业生产数据;二是像交易电价、售电量等方面的电力企业运营数据;三是如一体化平台、协同办公等电力企业管理数据。业界认为,如果能充分利用这些基于电网实际的数据,对其进行深入分析,便可以提供大量的高附加值服务。
记者在采访中发现,多位专家有着相似的想法,即当前我国已开启新一轮的电改,一系列配套文件正在逐步出台,然而这些政策是否有利于智能电网的发展,在政策的试行阶段开展分析和检验,大数据是非常有效的手段。
据中国电力企业联合会科技开发服务中心相关负责人透露,目前,中电联正在积极落实电改“9号文”及配套措施的要求,研究建立电力行业信用信息应用大数据中心,采集电力企业信息(含售电企业),同时进行动态管理,从不同维度采集数据,这就需要从不同方面加强数据交换和共享,实现政府、行业、企业协作,实现电力企业信用信息及时公示,将其逐步纳入全国统一信用大数据中心。
“我们提出要形成覆盖全行业及其上下游信用链的征信系统,建立守信激励和失信惩戒机制,进一步提高电力行业诚信意识和信用水平,通过建设与全国统一的征信系统对接的电力行业信用管理与服务平台,为行业和社会监督、信用评价与信用采信提供便捷的途径。”这位负责人说。
能源电力的“大数据问题”仍待突破
无疑,大数据为能源电力的发展带来了新机遇。但专家提醒,要想顺利搭上“大数据”这班列车,业界至少还需要跨过几道门槛。
中电联相关负责人认为,目前社会各界获取电力相关信息的方式主要有国家发展改革委、国家统计局、国家能源局等部委网站、门户网站、主流纸媒、各类论坛会议以及相关咨询研究机构等,尚缺乏一个全面、权威的支撑科学决策的电力行业大数据中心。中电联有必要联合相关互联网企业协同建立电力行业大数据中心。
同方知网产业集团能源事业部总经理闵艳丽告诉记者,从电力企业知识管理的角度来讲,以往以文献信息为主的知识主要来源于数据库资源、互联网情报资源以及企业内部档案资源,但这些知识从数据量的角度来讲,尚达不到大数据拍字节量级。但这并不意味着电力企业无法开展大数据知识管理。
据科学家估算,人类大脑容量预计在1.25太字节。这意味着,一个拥有800名员工的企业,其隐性知识存有量就能达到1拍字节(1024太字节),即“大数据”量级。另外,从数据挖掘与揭示的角度来讲,大数据在电力行业信息服务领域的应用还包括挖掘文献背后的概念语义关系。据闵艳丽介绍,以往查询“智能电网”,通过网络一站式检索,能够找到大量与之相关的学术文献,更深一步的信息服务仅仅是按作者、机构、基金、来源、时间等对文献进行排序。如果运用大数据可视化技术,我们可以从更多维度来深度揭示文献背后的隐性关系,比如通过发文量统计与揭示,找到最近3年“智能电网”的总体研究趋势,再比如通过关键词在上述文献中的出现次数,可分析出近3年的研究热点。
关于大数据应用方面,傅毅明说:“能源电力作为企业重要的成本支出项,是企业管理的重要内容。由于大数据的基础投入较大,在大中型工业企业的应用较好,中小企业的应用方面相对薄弱。比如建筑用能方面,大型公共建筑应用较多,一般公共建筑和居民建筑应用较少,主要原因是单个大数据平台的基础建设成本较高,可以通过建立大数据公共服务平台的方式降低成本,提高服务水平。交通用能方面,大量货运企业都是‘小、散、乱’的组织形态,大数据应用和节能减排方面的能力不足,需要重点关注。”有关能源电力行业应如何与大数据更好地结合发展的问题,傅毅明认为,一是要强化能源电力行业内部的大数据资源建设,培育专业的大数据服务商,发挥能源电力行业在“互联网+”和大数据应用的先行引领作用。二是要加强能源电力行业大数据资源与国民经济其他行业大数据资源的交换共享,打造能源经济运行大数据监控平台,为各级政府、行业部门、企业和公众等服务。另外,本着顶层设计与试点示范相结合的原则,还需要有一个路线图和组织分工网络。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20