
能源电力行业应主动适应和引领大数据变革
所谓引入大数据,是指建立面向大数据的生产与组织管理模式,这是每个行业的必然趋势。能源电力行业的信息化发展水平较高,有资本密集优势,是大数据应用的先行部门,应当主动适应和引领大数据变革。”中国人民大学环境政策与环境规划研究所副所长傅毅明在近日举办的企业协创平台建设与行业知识大数据应用研讨会上对记者表示。
大数据可在电改中“一展身手”
“大数据作为重要的生产要素,是能源电力行业发展转型的重要支撑。”傅毅明在接受记者采访时表示,一方面大数据能促进能源电力行业管理变革,提高能源资源配置效率,比如能耗(电力)在线监控系统的建设对于节能减排具有重要贡献。
另一方面是可以提高国民经济的监控能力,将能源电力系统的运行作为反映国民经济运行安全与效率的晴雨表。
据了解,电网的业务数据大致分为三类:一是像发电量、电压稳定性等方面的电力企业生产数据;二是像交易电价、售电量等方面的电力企业运营数据;三是如一体化平台、协同办公等电力企业管理数据。业界认为,如果能充分利用这些基于电网实际的数据,对其进行深入分析,便可以提供大量的高附加值服务。
记者在采访中发现,多位专家有着相似的想法,即当前我国已开启新一轮的电改,一系列配套文件正在逐步出台,然而这些政策是否有利于智能电网的发展,在政策的试行阶段开展分析和检验,大数据是非常有效的手段。
据中国电力企业联合会科技开发服务中心相关负责人透露,目前,中电联正在积极落实电改“9号文”及配套措施的要求,研究建立电力行业信用信息应用大数据中心,采集电力企业信息(含售电企业),同时进行动态管理,从不同维度采集数据,这就需要从不同方面加强数据交换和共享,实现政府、行业、企业协作,实现电力企业信用信息及时公示,将其逐步纳入全国统一信用大数据中心。
“我们提出要形成覆盖全行业及其上下游信用链的征信系统,建立守信激励和失信惩戒机制,进一步提高电力行业诚信意识和信用水平,通过建设与全国统一的征信系统对接的电力行业信用管理与服务平台,为行业和社会监督、信用评价与信用采信提供便捷的途径。”这位负责人说。
能源电力的“大数据问题”仍待突破
无疑,大数据为能源电力的发展带来了新机遇。但专家提醒,要想顺利搭上“大数据”这班列车,业界至少还需要跨过几道门槛。
中电联相关负责人认为,目前社会各界获取电力相关信息的方式主要有国家发展改革委、国家统计局、国家能源局等部委网站、门户网站、主流纸媒、各类论坛会议以及相关咨询研究机构等,尚缺乏一个全面、权威的支撑科学决策的电力行业大数据中心。中电联有必要联合相关互联网企业协同建立电力行业大数据中心。
同方知网产业集团能源事业部总经理闵艳丽告诉记者,从电力企业知识管理的角度来讲,以往以文献信息为主的知识主要来源于数据库资源、互联网情报资源以及企业内部档案资源,但这些知识从数据量的角度来讲,尚达不到大数据拍字节量级。但这并不意味着电力企业无法开展大数据知识管理。
据科学家估算,人类大脑容量预计在1.25太字节。这意味着,一个拥有800名员工的企业,其隐性知识存有量就能达到1拍字节(1024太字节),即“大数据”量级。另外,从数据挖掘与揭示的角度来讲,大数据在电力行业信息服务领域的应用还包括挖掘文献背后的概念语义关系。据闵艳丽介绍,以往查询“智能电网”,通过网络一站式检索,能够找到大量与之相关的学术文献,更深一步的信息服务仅仅是按作者、机构、基金、来源、时间等对文献进行排序。如果运用大数据可视化技术,我们可以从更多维度来深度揭示文献背后的隐性关系,比如通过发文量统计与揭示,找到最近3年“智能电网”的总体研究趋势,再比如通过关键词在上述文献中的出现次数,可分析出近3年的研究热点。
关于大数据应用方面,傅毅明说:“能源电力作为企业重要的成本支出项,是企业管理的重要内容。由于大数据的基础投入较大,在大中型工业企业的应用较好,中小企业的应用方面相对薄弱。比如建筑用能方面,大型公共建筑应用较多,一般公共建筑和居民建筑应用较少,主要原因是单个大数据平台的基础建设成本较高,可以通过建立大数据公共服务平台的方式降低成本,提高服务水平。交通用能方面,大量货运企业都是‘小、散、乱’的组织形态,大数据应用和节能减排方面的能力不足,需要重点关注。”有关能源电力行业应如何与大数据更好地结合发展的问题,傅毅明认为,一是要强化能源电力行业内部的大数据资源建设,培育专业的大数据服务商,发挥能源电力行业在“互联网+”和大数据应用的先行引领作用。二是要加强能源电力行业大数据资源与国民经济其他行业大数据资源的交换共享,打造能源经济运行大数据监控平台,为各级政府、行业部门、企业和公众等服务。另外,本着顶层设计与试点示范相结合的原则,还需要有一个路线图和组织分工网络。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30