
看大数据和机器学习如何助力公司腾飞
无可否认,我们已经步入大数据时代,轻敲键盘就能获得海量数据。随着物联网(IoT)的发展,数据量还会进一步扩增。今后十年里,预计有 500-700 亿联网设备涌入市场,忽视如此大规模的数据并非明智之选。
企业可以在机器学习的帮助下充分利用大数据。这里提到的机器学习不是科幻电影里面与人类为敌的机器人,现代机器学习致力于挖掘数据中的价值。
IBM 计划向开发者开放 Watson(IBM 超级计算机)海量 API 中的部分接口,但是 Watson 并不是唯一的机器学习(ML)系统,还包括 Google Deepmind(Google Brain 项目的一部分)、斯坦福的 Deepdive(与 DARPA,即美国国防先进研究项目局合作)、微软的 Azure 平台和 MIT 的 ConceptNet5。
下面我们来看看科技创新者如何高效利用大数据和机器学习。
企业要想提供切实可行的解决方案,效率至关重要。这体现在产品和服务的方方面面,从设备的原型阶段到市场推广阶段,效率始终是根本。
机器学习能够迅速处理从传感器、室内系统和外部合作伙伴获取的数据,从数据中得出新的结论,最大化利用各种综合信息,从而精简当前工作流程。这一提高效率的方式对企业和个人都适用。
举个例子:Attitude Sports 老板大卫 · 哈斯(David Haase)报名参加了环美自行车竞赛(Race Across America),在 3000 英里的比赛中他排名第二,能取得这样的成绩归功了大数据和机器学习。他的团队实时监测他的生物数据,并与其他的数据相结合。在九天的时间里,团队追踪风速等数据,判断休息和补充能量的最佳时间点。正是这一系列的数据分析使得大卫 · 哈斯足足领先了第三名一天的时间。
再比如现在在 NBA 战无不胜的勇士队,训练师早就使用可穿戴装置监测球员的疲劳度,监测球员的心率、下肢承重力等数据,利用数据判断群员的健康状况,合理安排轮休,这也是为什么勇士队能保持健康。
效率提高就意味着成本降低和时间节省。波音分析人员正在探寻数据关联性,缩短飞行时间,减少燃油量。
诚然,持续不断的创新不容易,而且在创新的时候,并不能确定这个新点子的实用价值。机器学习的优势在于能从各个方面评估这项创新,比如确定现有产品的缺陷、前瞻性分析或者发现之前不为他人注意模式。
DARPA(美国国防先进研究项目局)的使命在于创新,DARPA 在很多不为大众所知的高度机密项目上运用了大数据和机器学习。身为互联网的前身(ARPANET),DARPA 使用人工智能系统检测软件漏洞。在商业上,以环保著称的波音 787 机型极度依赖数据反应实时状况,创新性地解决环保问题。
新的商业模式是数据应用必然的副产品。你的公司如何向顾客传播价值?你如何收集和利用数据?
大数据能够挖掘之前没有意识到模式和联结,并实时体现其价值:一线员工能够迅速处理站在他面前用户的问题,用户也能从服务中得到价值,提供反馈。这一观点必将改变业务经营模式。
以 Local Motors 为例,其使用 3D 自动生产制造技术,能够在 40 个小时以内打印出一辆可操控的汽车。只要有了正确的数据,一个小型、高效的生产工厂就能满足客户的定制需求——这是一种全新的生产和销售汽车的模式。
大数据分析和机器学习向已有的高效方法论和创新论发起了强有力的挑战。它们甚至可以颠覆传统行业运营方式,大数据和机器学习必将驱动公司业务的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30