京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据的局限:大数据分析不能告诉你什么
大数据分析的拥护者竭尽全力地鼓吹“数据驱动”,明智的人应该谨慎对待,并明确两个问题。一,业务人员在制定特定决策时是否真正理解相关数据,是否曾经以实用且可行的方式向管理层展示了这些数据?二,是否所有决策都有必要在收集“所有数据”之后自动完成?
在《认清风险:如何作出好决策》(Risk Savvy: How to Make Good Decisions)中,德国柏林Max Planck人类发展研究所管理主管Gerd Gigerenzer阐述了公共环境中风险测量与决策过程的问题,他的观点同样适用于商业领域。
首先,我们看看Gigerenzer举的一些例子。它们说明了大多数人所获得的统计数据只是很小一部分,而且我们很容易因为数据的不正确性或明显误用而产生错误结论。
在911事件的一年时间里,成千上万的美国人放弃乘坐飞机,转而选择开车长途远行,因为他们害怕遇到相同的袭击。高速公路行驶距离因此增长了5%,而道路交通意外死亡人数在一年里逐月上升,已经超过了过去五年的平均水平。此外,粗略计算有约1,600人丧身交通意外,而航空旅客及空乘人员的伤亡人数只有256人,其中还包括911事件的伤亡数字。
由于对当时伤亡事件产生了主观反应,美国公众完全忽视了有效的统计风险测量结果,即飞机的安全系数要远远高于汽车。
1995年,英国医药安全委员会发布了一系列研究结果,服用第三代口服避孕药的人患血栓症的概率是普通人的两倍。这个研究结果很快传遍全世界。医生与药剂师向妇女传达了由预期结论得出的警告信息:意外怀孕与妊辰激增。接下来的一年时间里,仅仅在英格兰和威尔士流产案例预计增加了13,000人次。
尽管这些专家都经过科学和医学培训,但是他们严重忽视或忽略一个结果:绝对风险数量增加一倍才只有7000人次,也远远不及由怀孕与流产导致的血栓症风险。因此,相同的数据有两种描述方式:一是风险率相对增长100%,二是绝对增长数量为7,000。前者很容易占据新闻头条和引起公众跟风。而后者则不会造成太大影响,但是可能会避免很多痛苦。
Gigerenzer的书还有很多这样的故事,如果你有兴趣了解人们解读数字数据的方式及使用(或不使用)这些数字作为决策依据的方式,那么这本书很值得你阅读。事实是,即使经过科学训练,只有极少数人能够正确理解这个领域。因此,我们缺少区分不同风险表达方式及不确定性的能力,也缺乏一些帮助理解所得到结果的培训。对于世界上的一些概念,我们很容易陷入偏见或先入为主的错误理解方式。
当我们从“少量数据”世界(掌握简单算术就足够应付)过渡到充斥大数据统计的世界时,数据误解产生的危害也出现指数增长。无论自助服务商业智能有多厉害,它们也无法轻松扩展变成自助服务商业分析。业务用户(及许多数据科学家)都需要在理解和展示统计数据方面加强自身的能力。
除了技能问题,还有一个更根本的问题,而911事件关于航空旅行方式的态度改变就是一个最好的例子。我将这种现象称为商业不智能(Business unIntelligence),并且在我的同名图书中提出了这个术语。按照西方商业思维方式,智慧几乎可以完全等同于合理和理智思想,特别是在决策过程中。这忽略了大脑的现实情况及其思维过程,其中有90%的想法是无意识发生的。决策很少是由数据驱动的,特别是那些会对个人产生影响或需要快速响应的决策。
心理学家及诺贝尔经济学奖得主Daniel Kahneman在他写的书《快思考与慢思考》中阐述了这个话题,但是他落入唯理性主义者的圈套,后者认为无意识思维源于有意识思维。这样就得出了一些结论:我们很容易作出一些严重错误且非常容易受外界干扰的决策,而且总是在有意识地保护自己。或者更坏的情况是,一些专制政府可能且总是会“迫使”我们作出一些有利于自身的决策。
当然,自我意识也很重要。然而,如果认为我们新进化的小小前额可以或应该完全超越大多数大脑的长期进化但潜意识发生的感知,那么这是极其短视的。这种感知对于现实世界的决策过程有很多影响——形式包括内在感受、直觉、有根据的揣测和探索,而它们会忽略得到的大部分数据。如果只关注于收集和堆砌不断增多的数据,那么我们就有迷失的风险。
在不确定的世界里,有一些事件是无法预测的,基于数据分析出来的概率只能让人得到一个决策。2008年金融领域发生的事件表明,过份依赖于预测风险模型是灾难性的,因为有一些东西不在模型参数的覆盖范围之内。Gigerenzer指出:“问题在于不正确的风险测量:这些方法错误地假定不确定的世界里有已知的风险。因为这些计算为一个不确定的风险产生了精确的数字,因此它们会产生一个虚假的确定性。”
在决策过程中完全依赖数据驱动或分析工具本身具有内在的危险性。人类决策者所带来的价值是他能够看到环境和理解业务环境。这些洞察力并不能完全由参数来描述。当然,它们也来源于一些信息:思想认识中的旧记忆或新思维模式。但是,它们大多数都基于计算机科学远远无法理解的思维处理模型,计算机还完全无法模拟出思维。这是一个宝贵的东西。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06