京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的个性化互联网服务解决之道
现代社会是一个商业社会,工业化解决了批量生产商品的问题,促进商业蓬勃发展。随着社会的不断发展,商品也越来越多样化,以期满足大众的不同需求。以电视机为例,最初只有尺寸的区别,后来可以选择品牌型号。直到11年9月27日,海尔和天猫在网上发起用户定制电视的活动;用户可以在电视机生产以前就选择电视尺寸、边框、清晰度、能耗、颜色、接口等属性,再由厂商组织生产并送货到客户家中。这样的个性化服务受到广泛欢迎,2天内1万台订制电视的额度被抢光。类似的定制服务在空调、服装等等商品上都受到用户欢迎。这些事例已经展示了未来商业的曙光通过满足个性化需求来使用户得到更满意的产品,进而缩短设计、生产、运输、销售的周期来提升商业运转的效率。
大数据是实现个性化的基础
要实现个性化的商业模式,充足的数据是基础。比基尼生产厂商都知道他们的产品在海滩边或滨海城市有市场。可有谁能料到新疆和内蒙古的男人最爱给自己女人买比基尼呢?这样的潜规则隐藏在数据中,需要深挖才能见天日,就像啤酒和尿布的经典故事那样。而大数据相对于传统的数据挖掘更进一步。数据量大、数据种类多、数据之间有潜在关联是挖掘大数据的前提。整个互联网的用户和所有的商品本身就是一个足够大的数据空间,加上空间、时间、天气等等潜在相关因素,想要知道每个用户的喜好,所需要的数据量是巨大的。数据越多对用户的理解越精准。
互联网大数据处理的技术挑战
处理互联网大数据充满挑战,首当其冲的就是处理大数据的能力。为使消费数据的速度赶超生成数据的速度,拥有足够的计算资源是必要条件。在此基础上,线性扩展的计算框架、高效稳定的程序设计以及精准的算法都是大数据处理的核心能力。
第二个挑战便是时效性。用户在互联网上的操作不断地暗示其意图,只有及时感知到这些意图,才能在用户下一次操作前做出有效的响应,最终给用户带来便捷。这样的时效性要求系统的计算框架能够以数据流的方式来运转。最终导致系统在如何实时分流负载、实时容错等问题上采用与传统批量大数据处理截然不同的技术方案。
为了更大程度的满足个性化需求,还必须具有足够强大的定制能力。一方面,尽管单个用户的定制需求可能很小,但用户数量巨大,定制需求迥异,不是几个工程师努力下就能完全解决问题的。需要有像数据库SQL语言那样给用户足够多的自由,使再小的需求通过简单的操作就能满足。这样的定制能力要在数据的存储、运算、查询、展现等多方面都有体现。
阿里云的解决之道云推荐
不论是收集大数据的计算和存储能力,还是处理个性化问题所需要的实时计算和算法技术;对于网站站长和开发者而言都是不容易快速得到解决的问题。阿里云正试图通过云端服务来降低个性化服务的门槛,使更多网站站长和开发者能够低成本享有自己的个性化服务。
如果某网站是介绍美食菜谱的,用户在浏览茶树菇鸡汤的时候,如果能够有些相关菜谱推荐,那么便可以让用户在网站内停留更多时间,访问更多内容。事实上,有多种推荐算法可以找到用户感兴趣的内容:
l 从用户访问日志里面也许发现用户访问好这个菜谱以后五成用户都会去看看补血益气乌鸡汤、这种现象一定有其背后的理由,也许会成为一个不错的推荐。
l 既然用户在看鸡汤类别的菜谱,那就可以把网站里面其他热门的鸡汤菜谱推荐出来,如香菇鸡汤。
l 通过分析某一个用户过去历史的访问记录,或许能发现该用户相对于其他用户更偏向于文火慢炖的汤,那就应该适当推荐出类似炖鸡汤这样的菜谱。
l 相对于鸡汤而言,羊肉汤也是汤类别的热门品种,用户也许会吃鸡汤吃腻了想换换口味。
然而,要实现这样的推荐,传统的做法需要大量人工编辑工作。既不能做到即时,也很难保证效果。人工编辑更难验证这些推荐算法是否能在真实流量上产生足够好的效果。一个精准的推荐模型,必须对算法本身的整体效果以及用户对各种算法推荐结果的偏好作一个综合评估,这样才能找到合适每一个用户的精准推荐模型。最终让用户享受到推荐展位千人千面的个性化服务。
在云推荐的管理界面里,网站开发人员可以定制推荐位置大小、推荐内容条目数、URL范围、展现形式等参数。网站站长还能看到推荐展位的点击情况,并根据建议适当调整推荐位置参数以改善效果。
根据后台统计,网站启用云推荐后的整体流量会提升10%。这样的个性化服务让人感觉就像是钱存银行能拿到利息一样,是大数据魅力的展现。相信随着数据的不断积累及用户数量的累积,个性化服务在大数据时代能给人带来的远不止10%流量提升这样的惊喜!(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20