京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据库与大数据领域回顾与展望
2012注定是不平凡的一年,玛雅人将世界末日定在这一年的12月21日,然而这一天也许并不意味着结束,而是重生。正如2012对于大数据的意义一样,经过一年的历练,IT业界将在2013年迎来大数据元年。
一、2012年度回顾:大数据蓄势待发迎接元年
(一)2012年大数据呈现新特征
大数据不是刚刚出现的概念,大数据最早可以追溯到Apache的开源项目Nutch,当时大数据用来描述更新网络搜索索引所需批量处理或分析的大量数据集。随着谷歌MapReduce和GoogleFile System(GFS)的发布,大数据不仅仅用来描述大量的数据,还涵盖了处理数据的速度。
业界对大数据最普遍的认知是它的4V特征,即海量的数据规模(volume)、快速的数据流转和动态的数据体系(velocity)、多样的数据类型(variety)和巨大的数据价值(value)。2012年作为大数据产业蓄势待发的一年,大数据呈现以下新特征:
1.数据量增长更加迅速。随着社交网络和移动互联网的发展,数据呈现爆炸式增长,甚至过去三年里产生的数据量超越了以往四万年的数据量。国内最大的微博新浪微博在今年第三季度宣布注册用户已超过4亿,用户平均每天发布超过10亿条微博内容,活跃用户中有60%通过移动终端登录,所有来自移动终端的原创内容中,有40%的微博分享照片。根据IDC今年一项研究显示,未来10年全球数据量将以40%的速度增长,到2020年将达到35ZB(Zettabyte),大数据将迎来ZB时代。然而这仅仅是个开始,未来数据量将达到什么级别,我们无法想象。
2.数据在企业中的地位日益突出。数据是企业最宝贵的资源。当前,企业最迫切的就是希望能从大数据中挖掘商业价值,以保持其在市场中的竞争力。随着数据挖掘、数据分析和商业智能技术的不断深入,企业决策越来越依赖于数据。大数据将会创造一个新的经济领域,该领域的全部任务就是将信息或数据转化为经济利益。分析的数据越全面,分析结果就越接近于真实,才能更好的指导企业运营。.企业中的数据既包括结构化数据,也包括非结构化数据,且非结构化数据的比例越来越高。IDC在报告中指出,利用大数据的商业价值:领军企业与其他企业之间最大的显著差别在于新数据类型的引入,那些没有引入新的分析技术和新的数据类型的企业,不太可能成为其行业的领军者。
3.大数据人才缺口巨大。大数据时代更需要复合型人才,能够帮助组织在大量信息中挖掘有价值的数据,并将数据转化为深入的认知和精准预测的模型。大数据人才须具备综合性素质:他们通常是统计学家并且精通数据建模,同时知道如何在可用数据中使用最佳的算法,这极具技术含量。据Gartner预测,到2015年,全球将新增440万个与大数据相关的工作岗位,且会有25%的组织设立首席数据官职位。今年7月,阿里巴巴集团成为国内第一家任命首席数据官的企业,业内也普遍看好数据人才的未来。
4.企业对大数据的投入增加。2012年大数据市场的增长速度明显快于整个IT市场,据Gartner的最新统计,大数据市场销售额将在2012年增长21.4%,达到340亿美元。在今年大数据总开支中,只有43亿美元或12.6%的资金是直接由新的大数据功能产生的,而大部分的开支仍流向比较传统的解决方案,以满足企业对速度、多样性和数据容量的需求。目前企业对大数据的投入还停留在基础设施建设阶段,想要真正将数据转化为价值,还需继续在数据分析和展现等环节加大投入。
(二)IT巨头进军大数据 新兴企业不断涌现
大数据带来的商业机遇被越来越多的厂商看重,传统IT厂商陆续推出大数据产品及解决方案,引入多年技术积累和客户资源;同时大数据新兴企业不断涌现,大有超越前者之势。
1.IT巨头进军大数据。以IBM、Oracle、SAP、Intel、微软为代表的老牌IT厂商将业务触角伸向大数据产业,推出软件、硬件及软硬件一体化的行业解决方案。这其中既包括对Hadoop等开源大数据技术的集成,也包括各大厂商独有的创新技术。
收购也是IT巨头进入大数据市场的敲门砖。今年4月,虚拟化巨头VMware收购大数据分析的初创企业Cetas,提供Hadoop平台上的分析服务,从而开启VMware大数据之旅。另外,大数据收购案例还包括Teradata收购高级分析和管理各种非结构化数据领域的市场领导者和开拓者Aster Data,IBM收购商业分析公司Netezza等。
这些老牌IT厂商技术实力不俗,产品线丰富,在各个领域发挥重要作用。进军大数据市场,既增加了雄厚的技术底蕴,也能够让客户更容易的接受他们的产品或解决方案,逐渐成为大数据产业发展的主力军。
2.新兴企业不断涌现。与那些老牌IT厂商不同,大数据市场还吸引了许多新兴企业的加盟。面对大数据带来的无限商机,初创公司开始挖掘大数据的商业价值,推出别具一格的产品或解决方案。
在这些新兴企业中,有业内比较熟悉的基于Apache Hadoop的大数据分析解决方案的提供商Datameer、大数据分析公司Connotate、大数据技术初创公司ClearStory Data等,其中大数据公司Splunk于今年4月在纳斯达克成功上市。
新兴企业拥有独特的技术优势,是传统IT企业所不具有的。相对于IT巨头,新兴企业更能够从细化的角度服务企业,向企业提供更专业的大数据服务。因此,在充满机遇的大数据市场,新兴企业完全有可能超越IT巨头,在短时间内获得市场的认可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27