
Andrieux说:“由于互联网上人类和机器的活动,造成非结构化数据爆炸式增长,推动了Hadoop的兴起。非结构化数据存在巨大的价值,但通 过以往类似SQL的索引技术几乎不可能挖掘出有意义的信息。大数据生态圈中Hadoop和类似工具为工程师提供从非结构化数据中创建结构化数据的能力,在 大规模分布式范围内获取有价值的业务洞察力。
就业市场比较看好熟悉Hadoop这类大数据工具(如Cassandra、CouchDB、MongoDB、Riak等)的求职者。
我们又邀请Andrieux深入挖掘过去的求职热点问题,了解当前具有Hadoop技能以及相关专业知识的IT人士面临的就业现状。
当被问到公司招聘具备Hadoop技能的IT人员都有哪些要求时,Andrieux 回答,“经验是最重要的”。当你渴望找到一份与数据相关工作时,你也就迈进了竞争残酷的就业市场——虽然你总有一天会积累起经验,但是此刻才最重要。
假如你有必要的经验,那就要适当地展示出来。
Andrieux说:“我们客户中的那些初创公司正在寻找可以将大数据运用到实际生产中的工程师,仅仅展示还是不够的,最好能有在大公司的项目实践经验。”
对于年轻IT求职者或者经验丰富但想要学习新技能的IT人士,Andrieux推荐了两个方法:专业培训和认证、参加当地的行业聚会。
Andrieux建议:“如果有人想要进入大数据领域和学习Hadoop,我建议参加像Cloudera和Hortonworks这样大公司提供的Hadoop专业培训并通过相关认证。”这些培训给工程师们提供实践经验,而且通常可以得到该领域专家的指导。
当地行业组织为求职者们提供另一种教育,还有重要的社交机会。Andrieux说:“例如:theBay区(Riviera Partners公司所在地)周围的聚会群体每周或每月都有聚会,广泛讨论面向数据的主题,这些聚会的发言者往往是有影响力的行业领袖,在该领域有丰富的 经验并且能够提供最佳实践建议。聚会中有大量的交流机会,可以认识很多数据专家。”
在简历、履历和其他求职文件中,一些专业词汇和术语往往能够吸引招聘人员和人事经理的眼球。Andrieux提供的三个有代表性的例子:大规模设计和建造可扩展性分布式数据存储、系统和管道;实现xxxx节点的Hadoop集群;从零开始或者从底层开始构建。
如果你在找工作,目光不要过于狭隘——切记大数据相关的职位有各种各样形式,而且有些工作看起来与Hadoop相关,实际却只是一种伪装。Andrieux说:“常见的数据工程师甚至像后端工程师这样的职位也是与Hadoop相关的工作。”
Andrieux注意到Hadoop是一个相对年轻的技术,和整个大数据行业一样。因此,要想在大数据行业或者相关行业得到较好的发展,及时关注最新的行业趋势和变化特别重要。
坚持关注数据大会,比如Strate和Hadoop峰会。Andrieux说:“关注这些数据大会都是非常有利于了解行业前沿技术,在这些会议上会 有很多著名的企业参加。关注行业领袖们在他们公司网站上的博客,了解一些数据大会上的重要演讲,不要害怕与招聘者谈论行业发展趋势,只是我们看行业趋势要 比公众更具前瞻性。”
可以肯定的是,Hadoop仍然热门,但Andrieux指出:Hadoop不是应对数据指数型增长的唯一平台或技能。“Hadoop不是市场应对数据需求的唯一选择,关注一下应对大数据的不同技术,问问周围其他人在用哪些技术,有什么样的优点和缺点。”
大数据行业发展得越来越好,企业不惜重金聘请数据分析师,“学习Hadoop,找好工作不是梦想”的口号激励着无数同学投身大数据事业,只有自己充分了解这行业你才能掌握主动权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28