
数据科学家被《财富》杂志誉为21世纪最性感的职业,但遗憾的是大多数企业里都没有真正的数据科学家人才。根据麦肯锡报告,仅仅在美国市场,2018年大数据人才和高级分析专家的人才缺口将高达19万。此外美国企业还需要150万位能够提出正确问题、运用大数据分析结果的大数据相关管理人才。
那么,对于不同职业经历和专业背景的IT人士来说,如何才能尽快转型,加入数据科学家的钻石王老五的行列呢?
Ofer Mendelevitch近日在Hortonworks官方博客发表文章给出了自己的观点。
Mendelevitch认为无论是Java程序员还是业务分析师都有机会成为数据科学家,以下是他对不同人群给出的具体建议:
作为Java开发者,你对软件工程的规则已经了然于心,能够设计软件系统执行复杂任务。数据科学正是关于开发“数据产品”的一门科学,主要是基于数据和算法的软件系统。
对于Java程序员来说,第一步需要了解机器学习的各种算法:现在有哪些算法,都能解决哪些问题以及如何实现。另外还需要学习使用R和Matlab等建模工具,此外WEKA、Vowpal Wabbit和OpenNLP等库也为大多数常见算法提供了经过验证的实现方法。如果你还不太熟悉Hadoop,学习map-reduce、Pig、Hive和Mahout将很有帮助。
如果你是Python程序员,对软件开发和脚本编写一定很熟悉,也许已经在使用很多数据科学中常见的库例如NumPy和SciPy。
Python对数据科学应用的支持很好,尤其是NumPy/Scipy, Pandas, Scikit-learn, IPython 等用于探索性分析的库,以及可视化方面的Matplotlib。
在处理大型数据集方面,多学些Hadoop及其与Python的流式集成。
如果你有统计学或者机器学习的背景,那么你很可能很多年前就开始使用诸如R, Matlab 或 SAS进行回归分析、聚类分析等机器学习相关任务。
R、Matlab和SAS是很强大的统计分析和可视化工具,对于很多机器学习算法都有很成熟的实现方法。
但是,这些工具通常被用于做数据勘探和模型开发,很少单独用来开发产品级的数据产品。在开发端到端的数据产品时,大多数情况下,你需要需要同时用到其他软件模块如Java、Python等,并与Hadoop等数据平台整合。
显然,熟悉一门或者多门现代编程语言,例如Python或Java是你的首要任务。此外,与有经验的数据工程师紧密合作将有助于更好地理解他们开发生产级数据产品所用到的工具和方法。
如果你的背景是SQL,那么说明你已经跟数据打交道很多年了,你很清楚如何通过数据获取业务分析结果。Hive能让你以你熟悉的SQL语言访问Hadoop上的大数据集,因此是你步入大数据殿堂的首选。
数据产品通常需要使用SQL无法胜任的高级机器学习和统计,因此对于业务分析师来说,进入数据科学领域的第二个重要步骤就是在理论层面深入了解此类算法(例如推荐引擎、决策树、NLP),并熟悉目前的实现工具如Mahout, WEKA,或Python的 Scikit-learn。
作为Hadoop开发者,你一定已经了解了大数据集和集群计算的复杂性。你还可能熟悉Pig、Hive、HBase并有丰富的Java经验。
第一步,你需要深入了解机器学习和统计,以及这些算法面向大数据集的高效实现方法。Mahout是个不错的开始,可以在Hadoop上实现上述很多算法。
另外一个需要关注的领域是数据清理(data cleanup),很多算法在建模前都会为数据分配基本结构。但不幸的是,现实中数据大多很“脏”,清理这些数据是数据科学中一项很繁重的工作。Hadoop通常是建模前大规模数据清理和预处理的工具选择。
总结
通向数据科学殿堂之路不可能一帆风顺,你必须学习很多新规则、编程语言,更重要的是还要积累实战经验。这些都需要时间、精力和投入,但最终你会发现一切都物超所值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25