京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在现代的数字世界里,并不缺乏数据。事实上,我们面临着太多的数据。同时,企业正积极投资于云技术、移动技术和社交媒体。据人力资源公司Kforce的最新数据显示,数据的猛增提高了企业对收集、整理和分析数据的人才的需求。
面对猛增的数据和数据种类,企业非常需要能够收集和整合大数据的人才。ETL开发人员面临企业数据的多种不同的来源,并想办法从这些来源中提取数据、导入数据并调整数据以适应企业的需求,然后将其添加到数据库中。Kforce公司首席技术官Greg Jones表示:“鉴于ETL软件行业已经相当成熟,这些职位在大数据资源库可能会有长期的需求。”
Hadoop开发人员
Hadoop是基于Java的开源框架,它支持对大数据集的处理。根据Kforce表示,企业对Hadoop框架中的数据,以及不同种类的技术,如Hive、HBase、MapReduce、Pig等有着很高的需求,这主要是对数据量的需求。并且,如果没有大规模分布式处理,使用传统商业智能工具处理TB级/PB级的成本很高而且很费时间。Kforce公司的CTOGreg Jones表示:“具有Hadoo框架经验的人员最受追捧,随着企业确定其长期的大数据战略,这些职位将会更紧俏。”
可视化工具开发人员
大规模的数据给数据分析带来巨大挑战。新类型的可视化工具集(例如Spotifre、Qlikview和Tableau)允许直观的快速的数据探测。虽然这些职位可能类似于通常的商业智能开发人员,但Hadoop现在仍然很热门,而且是一种新类型的专门技能。
数据科学家
数据科学家之前被称为数据架构师,他们能够从数据中挖掘出商业价值。他们还必须具备良好的沟通能力,以向IT领导和业务领导解释数据结果。这些数据科学家通常还有自己的沙箱,用于探索和检查企业的数据,并帮助推动创新。
OLAP开发人员
联机分析处理(On-Line Analytical Processing,OLAP)开发人员是数据分析专家。他们从关系型或非结构化数据来源获取数据,并创建三维模型,然后构建用户界面,通过高性能预定义查询来访问数据。
数据仓库设备专家
Kforce公司称:“这些专家专门处理Teradata、Neteeza和Exadata等设备。”这个职位的核心职责包括数据集成、管理以及与这些高端设备相关的性能优化。通过利用优化内存、磁盘和数据存储架构,这些专业设备被用于提供大规模并行处理(MPP)。
预测分析开发人员
Kforce公司称:“在营销公司中,预测分析被大量用于预测消费者行为和瞄准目标受众。”有时候,这个职位似乎有点类似于数据科学家,这些IT人员非常擅长构建潜在商业情况、利用基于历史数据的假设来预测未来表现。
信息架构师
Kforce的大数据团队表示:“大数据让大家对Data Mastery(数据大师)重新产生了兴趣。”为了充分利用数据和建立可操作的计划,企业需要一种特殊的技能。信息架构师必须知道如何定义和记录关键要素,并确保数据以最有影响力的方式被阻止和解释。如果你想要获得这个职位,你需要掌握数据管理、业务知识和数据建模等相关知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27