
从云计算的角度分析企业大数据
目前,各大企业对于云计算技术的应用都尤为关注,而基于云的解决方案也为企业提供了巨大的价值,云处理大数据的能力正为企业带来更多的利益,用于供应链的云解决方案中已经很好地说明了这个能力。
在这个解决方案中,数据收集和共享的方法一直是革命性的。在以前,企业要处理由数千家供应商组成的供应链,对通过EDI方式访问企业ERP系统的每一个供应商进行验证。而采用EDI方式,需要对每一个供应商与企业之间的API的匹配情况进行反复的测试,一直到实现供应商与企业之间的全部数据传输和安全授权。此时,供应商将被允许进入企业的ERP系统。但这个流程是费力的和重复性的,并且确实耗费IT资源。
在后来,出现了用于供应链的云解决方案。这个解决方案对全球的数千个供应商和制造商接入保密的网络进行资格预审,而不像以前那样按顺序和反复地逐个审查供应商的资格,云提供商则负责共享的数据池。这个共享的数据池不仅包括交易文件,而且还包括运输和装货单据、订单表格、产品的技术规格和图表,对生产和运输货物流程以及向市场提供服务都至关重要的其它文件。最终结果是在云中有一个包含大数据和小数据的数据库。如果拥有正确的安全权限,每一个允许进入这个网络的人都可以随意访问这些数据。
很少有企业会想到把每一个产品生产商和供应商连接到拥有一个数据库的中心网络中去,但企业在他们的商务流程中看到了这些结果。而今,想要向云网络中增加一个新的供应商的过程只需几个小时便能搞定,而在以前进行EDI认证的时候,需要花费上几个月的时间。通讯中产生的混乱情况在云中比较少,因为每一个参与者都使用同一个云中的数据库。云制造商和供应商网络还能够让许多不同的公司安全地交换标准和大数据。
云采取的方法是:为大数据的每一个部分分配一个名称,让每一个人都可以访问;为这个云网络中的每一个交易伙伴提供一个商业规则。这些规则允许每一个合作伙伴把安全许可和权限分配给与其交换信息的其它机构的个人。
虽然企业采取了有意义的步骤实施这种云解决方案以处理其内部系统不能解决的外部商务流程问题,但企业现在还应该密切关注云已经完成了什么任务和把这些“吸取的教训”应用到自己内部系统以及如何处理大数据等方面。来看看这些教训都有哪些:
A:对数据采取更“民主的”方法不管大数据还是小数据
在云中的中心数据库工作的非常好,因为这个数据库包含与特定业务功能密切相关的大数据和小数据。企业数据集市应该采取同样的方法建造。
B:对大数据安全使用一个业务部门能控制的一种授权方法
把安全授权管理移交给最终业务部门能够创造通讯中的灵活性。然而,为了保持企业的安全标准,应该认真考虑这个问题。在这个过程开始的时候,最好请一位外部的安全遵从法规专家提供咨询意见。
C:追求“单一版本”
无论你在处理结构化、半结构化还是非结构化数据,你能够把越多的信息整合到整个企业的每一个人都可以使用的一套事实、数字和图表中,你就越有可能避免不同的系统发布的不同的数据引起的混乱。在你建立大数据的“数据集市”的时候,有一个极好的机会标准化向这些集市输入的数据并且开始“正确地做这个事情”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10