京公网安备 11010802034615号
经营许可证编号:京B2-20210330
5年前,“数据科学家”的工作描述还不存在。没人刊登招聘启示寻找数据科学领域里的专家,你在学校里也找不到这个专业。现在,雇主们正在争夺这些专家,而培养这些专家的课程在众多大学里开始层出不穷。《哈佛商业评论》(Harvard Business Review)甚至声称数据科学家是21世纪“最性感”的工作。
数据科学家取得海量数据,试图从中找出有用的信息。这项工作综合了统计学和编程,来鉴别出可能对一家公司的营收有巨大影响的因素——有时可能是微妙的因素,从某人是否会点击某类广告,到一种新的化学物在人体中是否有毒性。
华尔街、麦迪逊大道、底特律一直以来都聘用数据专家来分析商业数据。这个专业技能的出现反应了目前在一些行业里数据的规模和种类的扩展,比如网络上有关顾客的数据收集。现有的数据比单个经理们能够应付的量大太多、变化太快,以至于用传统方法难以分析。
智能手机的出现让零售商们看到了一个新的提供有价值数据的来源。举例来说,沃尔玛正在争夺引进更多的数据科学家,为其数十个职位刊登招聘广告,包括“处理大而快的数据的工程师”。工厂和工业设备上的传感器也在传输堆积如山的新数据,促使GE聘用数据科学家分析这些数据。
“数据科学家”这个称号是在2008年由当时在LinkedIn和Facebook工作的两名数据分析师发明的。现在许多创业公司正把自己的业务基于分析大量数据的能力——通常是来自不同源头的数据。比如,ZestFinance有一个预测模型,使用成千上万的变量来决定借贷商是否应当提供高风险贷款。该公司的数据科学家约翰·坎迪多(John Candido)说,这个模型使得承保风险比传统借贷商承担的风险低了40%。“对我们而言,所有数据都是贷款数据。”
杰克·克拉姆卡(Jake Klamka)提供一个6周的研究职位,帮助把来自数学、天体物理甚至神经科学领域的博士生们放到数据科学的职位上。他说,数据科学家已经变成一个流行的职位名称,部分是因为它把越来越多随意命名和重叠的工作角色归结在了一起。“我们这里各个领域的人都有,在他们的研究中都要处理大堆的数据,”他说,“他们需要知道如何编程,同时也需要强大的沟通技能和好奇心。”
对于最好的数据科学家,创造力和编程能力同样重要。Kaggle公司组织竞赛鼓励数据科学家发现分析海量数据集的最佳方法。公司执行长安东尼·戈德布卢姆(Anthony Goldbloom)说,那些拔尖的参赛者(该公司网站上有8.8万名注册参赛者)中,许多都来自天体物理学或电子工程领域。目前排名最高的参赛者是新加坡的一名精算师。
大学院校正开始响应市场的需求。斯坦福大学统计系主任冈瑟·沃尔瑟(Guenther Walther)说,学校计划在该系开设数据科学硕士学位。哥伦比亚大学、加州大学旧金山分校等学校已经开设了约几十个相关课程。Cloudera公司销售的软件可以处理和组织大规模数据。该公司在4月宣布将和7所大学合作,在本科课程中提供如何运用“大数据”技术的专业训练。
Cloudera的教育项目主管马克·莫里赛(Mark Morissey)说,技能短缺问题正在逼近,“市场不会以它目前想要的速度成长”。这推动了工资的上涨。在硅谷,刚入行的数据科学家的薪酬为11万到12万美元。
其他人认为这个趋势可能创造新的外包领域。目前在Kaggle的分数榜上排名第20位的沙希·戈德博尔(Shashi Godbole)是一名来自印度孟买的数据科学家,他最近完成了由Kaggle安排的一个按小时计酬的顾问工作。这是Kaggle目前正在发展中的新业务。戈德博尔为芝加哥的一个小型健康倡导非营利机构工作,现在还在投标其他工作。(他每小时赚取200美元,Kaggle从中赚300美元)。他在Kaggle的这些工作目前还是兼职,但他说,有朝一日它可能变成他的主要收入来源。
在数据科学家们自己看来,这个工作当然不像人们“粉饰”得那么性感。Cloudera的资深数据科学主管乔希·威尔斯(Josh Wills)说,自己的大部分时间都花在清理混乱的数据,比如把数字放到正确的栏中,开始筛选。
“我是个数据门房。这就是21世纪最性感的工作,”他说,“这么说真让人受宠若惊,但同时也让人有些困惑。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12