京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据构筑金融风险防火墙
2017年中央经济工作会议明确指出,根据党的十九大对未来经济工作的战略部署,今后几年经济工作的任务,就是要打好防范化解重大风险、精准脱贫、污染防治的攻坚战,重中之重就是要防范金融风险。
金融安全是经济发展的核心要素,完善的金融监管是保障金融安全的第一道防火墙。近些年来,随着电子商务、金融科技和互联网金融等各类“新金融”商业模式的兴起,我国金融业态发生了巨大的变化。从过去的严格等级的经营模式,转向了目前扁平化发展的模式。芝麻信用、蚂蚁金服、微众银行、P2P理财、互联网小贷等新金融概念和词汇已经让老百姓耳熟能详。普通群众、小微企业创业者,也能通过各类新金融平台获得方便快捷的金融服务。根据世界银行2017年最新研究统计报告显示,中国大陆地区个人和小微企业通过另类融资平台(主要指非传统金融机构、搭借金融科技的新金融平台)募集到的社会资金总额已经超过1.2万亿人民币,排名世界第一。世界银行这项研究表明,中国社会通过科技和金融服务水平的高速发展,在有效降低中小企业融资难度和成本这一世界性经济难题上,开创了一种全新的解决方案。
新金融的发展确实给社会和群众带来了进步和便捷的体验,但是监管一旦跟不上创新的脚步,就会给逐利资本天生具有野蛮成长的基因孕育沃土。影子银行通过金融科技融资平台放水债务杠杆、犯罪集团利用跨境支付系统洗钱、不实的经济金融信息嫁接互联网新媒体影响市场稳定等。这些非法行径带给社会经济金融环境的破坏,就是今后需重点防范的金融风险之一。
针对新金融业态下的监管,传统的手段往往需要花费巨大的社会成本,同时它所能达到的预期效果也可能非常有限。但是这块缺失可以通过大数据技术进行补足和增强。科学运用好大数据,以及针对大数据统计研究方法的创新,可以为新金融环境下做好监管提供前瞻性思路。例如,针对影子银行的债务杠杆融资风险防范,我们就可以用文本数据、工商数据、交易数据和资金流数据来分析,做好事中和事后的风险把控。影子银行风险问题的产生,来自于过去不同金融机构对于金融政策盲点的监管套利。银行的存款资金往往是受到最严厉的政策法律监管,但是证券业(包含期货、基金及其子公司)理财资金的运作,监管要求相对宽松。过去一段时间的市场监管套利操作方式之一,是把银行的表内存款资金,通过信托计划,对接券商或者基金公司的理财投资项目。把需要引入银行层面监管的业务,通过各种包装和通道,转换为证券行业监管模式,进入金融资本市场,让证券行业的公司做了银行业想做而又不能做的活,从而成为了金融市场的影子银行。
这类影子银行业务,会在监管盲区外和资本利益驱动下,积累出很大的隐形债务风险。同时,这些通过层层包装出来的资金,并不能有效降低实体企业的融资成本。越是层层包装,资金成本就越水涨船高。所以影子银行业务对金融市场的影响本质是拉高资金成本,扩大金融杠杆,增加市场系统性风险。
目前监管和防范影子银行隐形债务风险的难点在于,不容易追溯到资金起始的源头和最终的投资流向。但大数据技术可以作为有效的管理工具,我国任何金融机构和企业的投资文本协议都需要留存备案,并且合法的商业主体都需要达到完备的工商注册要求。对于这些文本信息数据和工商数据,通过智能技术深度学习的“关键词搜索和读取”工具,可以快速有效地描绘链接各类纷繁复杂的投资协议及其所涉及到的商业关系,根据这些相互关联的商业关系,能够勾勒出具体交易的法人实体和各自承担的法律责任。再通过对资金流交易数据和经由文本数据判断出来的商业关系进行交叉对比分析,就能精准定位资金的通道路径、杠杆规模以及最终投向。显而易见,这样的统计分析结果可以为监管层在排查金融市场系统性风险时做到便捷高效的精确导航。
定位影子银行的债务杠杆风险是大数据技术能够为金融行业做事中、事后风控的智能导航,它也能为某些新金融产业发展,做好监管立法、“事前风控”的参谋。“智能投顾”是现在全球证券投资行业最热门的金融科技发展方向。业界相信,未来资本证券市场做交易投资的主力军是具有人工智慧的电脑机器而不是人。电脑结合深度学习以及人工智能所衍生出来的智能投资顾问,可以提高证券投资回报率和降低投资风险。但是作为金融行业监管者,却需要思考这么一个问题,如果未来若干年,证券市场上智能投顾所占的交易比例越来越大,也就是越来越多的投资机构使用智能投顾操作买卖股票、期货、债券等金融产品,那么这将给整个证券市场带来什么样的风险?同时,对于相应的从业制度规范和监管法规需要做什么调整?我们不能简单地认为人工智能电脑系统作出的所有决定都是理性的、正确的。过往金融市场由于电脑系统操作而产生剧烈风险波动,甚至引发金融危机的案例有很多,最经典的就是1987年美国股灾和1998年长期资本管理公司破产导致的国际债券市场崩盘。未来的智能投顾会产生什么样的风险,无人得知。但是如果一定要等到风险爆发后才着手进行规范管理,整个社会将付出高昂代价。大数据技术针对这一块风险的事前防范,可以提供成熟的解决方案。既然我们不知道智能投顾将会给金融市场带来什么样的变化,代价最小的科学实践就是大数据场景模拟。让各种可能开发出来的智能投顾在全真模拟的金融市场环境下,放开实验,然后在模拟交易累积出来的海量大数据中,发现规律、排查问题、纠正错误、提前预防。
金融监管是防范金融风险的第一道防火墙。随着新金融概念搭借金融科技迅猛发展而衍生出来的全新业态模式,金融监管手段创新必须挺在风险防范实践最前线。我们要通过对大数据技术和潜力的深度开发,努力运用大数据科学思维,创立具有前瞻性的监管理论,为护航经济发展、防范金融风险做好可靠高效的“先行军”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27