京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据将使社会发展变革
今年以来,“大数据”一词被越来越多的人提到。从表层意义上看,人们用它来描述和定义信息爆炸时代产生的海量数据。实际上,“大数据”的渗透能力远超人们想象,不管是在物理学、生物学、环境生态学等领域,还是军事、金融、通信等行业,数据正在迅速膨胀,没有一个领域可以不被波及。“大数据”正在改变甚至颠覆着我们所处的整个时代,对社会发展产生了方方面面的影响。
大数据下的生活方式变革
在大数据时代,用户会越来越多地依赖于网络和各种“云端”工具提供的信息作出行为选择。从社会这个大方面上看,这有利于提升我们的生活质量、和谐程度,从而降低个人在群体中所面临的风险。比如美国的网络公司Farecast通过对2000亿条飞行数据记录的搜索和运算,可以预测美国各大航空公司每一张机票的平均价格的走势,如果一张机票的平均价格呈下降趋势,系统就会帮助用户作出稍后再购票的明智选择。反过来,如果一张机票的平均价格呈上涨趋势,系统就会提醒用户立刻购买该机票。通过预测机票价格的走势以及增降幅度,Farecast的票价预测工具能帮助消费者抓住最佳购买时机,节约出行成本。未来,通过对大数据信息的整合,这项技术可以广泛应用到其他领域,比如宾馆预订,贵金属、房产的购买等,只要这些领域内的产品差异不大,同时存在大幅度的价格差和大量可运用的数据,就都可以应用这项技术。人们应用这些专业网站提供的预测价格,在进行购物和消费时也会变得越来越理性。
从互联网浩瀚的数据宝藏中获取资料进行自动运算处理的计算机工具正在快速普及,处在一线的是正在迅速发展的人工智能技术,像自然语言处理、模式识别以及机器学习。那些人工智能技术可以被应用到多个领域。现在,Google的无人驾驶汽车已经在加州行驶了几千公里,未来我们可以通过人工智能与汽车产生互动,从而使自动驾驶得以实现,当然,这些都是基于大量数据解析的结果。又如,越来越智能化的手机语音助手随着人们提供的数以百万计的数据,正变成人们的个人小助理,为用户提供提醒、天气预报、收发邮件、行程安排等多种服务,未来所能解决的问题也越来越多。
大数据下的营销方式变革
有数据显示,Twitter平均每天产生3.4亿条消息,而Facebook每日则有40亿条信息在扩散。随着社交网络的全球扩张,数据大爆炸正在改写营销规则。社会化媒体的广泛应用带来了海量的数据。数字科技的发展越来越深刻影响到营销的方法论以及营销的效率,这个时代已经完全不是此前单纯的数字媒体化年代。网络媒体正在从单纯的内容提供方进化成开放生态的主导者,大数据时代的社会化营销重点是理解消费者背后的海量数据,挖掘用户需求,并最终提供个性化的跨平台的营销解决方案。
在大数据时代,整个营销系统的变量越来越多,各种新势力与传统力量在系统中不断耗散与协同。这些日益增加的复杂性最终导致了整个系统的目标慢慢开始失焦,那些在传统营销时代原本理所当然的方法论开始变得不确定。未来,将会有越来越多的企业通过各种用户产品、数据库对用户行为进行一系列的数据洞察、分析和挖掘,深度剖析每一个用户族群,通过差异化标签在品牌和受众之间建立社会化的营销关联。而基于对大数据营销价值的挖掘成为在线营销领域面临的课题,也就是企业可以通过追踪用户浏览网页及购物习惯智能地提升精准投放广告的能力,从而得到更高的投资回报率。
大数据下的医疗方式变革
在公共卫生和医疗领域,“大数据”的预测有望为人们提供强大的健康保障。通过对上万名自闭症患者家庭背景、居住地区、父母饮食、环境差异等数据的收集,我们或许可以发现这种疾病的成因。研究人员已发现,Google搜索请求中诸如“流感症状”和“流感治疗”之类的关键词出现的高峰要比一个地区医院急诊室流感患者增加出现的时间早两三个星期(而急诊室的报告往往要比浏览慢两个星期左右)。通过类似现象的判断,我们可以提前预测疾病的爆发,更有针对性地作出预防。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27