京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python多线程与同步 (threading包)
Python主要通过标准库中的threading包来实现多线程。在当今网络时代,每个服务器都会接收到大量的请求。服务器可以利用多线程的方式来处理这些请求,以提高对网络端口的读写效率。Python是一种网络服务器的后台工作语言 (比如豆瓣网),所以多线程也就很自然被Python语言支持。
(关于多线程的原理和C实现方法,请参考我之前写的Linux多线程与同步,要了解race condition, mutex和condition variable的概念)
多线程售票以及同步
我们使用Python来实现Linux多线程与同步文中的售票程序。我们使用mutex (也就是Python中的Lock类对象) 来实现线程的同步:
# A program to simulate selling tickets in multi-thread way
# Written by Vamei
import threading
import time
import os
# This function could be any function to do other chores.
def doChore():
time.sleep(0.5)
# Function for each thread
def booth(tid):
global i
global lock
while True:
lock.acquire() # Lock; or wait if other thread is holding the lock
if i != 0:
i = i - 1 # Sell tickets
print(tid,':now left:',i) # Tickets left
doChore() # Other critical operations
else:
print("Thread_id",tid," No more tickets")
os._exit(0) # Exit the whole process immediately
lock.release() # Unblock
doChore() # Non-critical operations
# Start of the main function
i = 100 # Available ticket number
lock = threading.Lock() # Lock (i.e., mutex)
# Start 10 threads
for k in range(10):
new_thread = threading.Thread(target=booth,args=(k,)) # Set up thread; target: the callable (function) to be run, args: the argument for the callable
new_thread.start() # run the thread
我们使用了两个全局变量,一个是i,用以储存剩余票数;一个是lock对象,用于同步线程对i的修改。此外,在最后的for循环中,我们总共设置了10个线程。每个线程都执行booth()函数。线程在调用start()方法的时候正式启动 (实际上,计算机中最多会有11个线程,因为主程序本身也会占用一个线程)。Python使用threading.Thread对象来代表线程,用threading.Lock对象来代表一个互斥锁 (mutex)。
有两点需要注意:
我们在函数中使用global来声明变量为全局变量,从而让多线程共享i和lock (在C语言中,我们通过将变量放在所有函数外面来让它成为全局变量)。如果不这么声明,由于i和lock是不可变数据对象,它们将被当作一个局部变量(参看Python动态类型)。如果是可变数据对象的话,则不需要global声明。我们甚至可以将可变数据对象作为参数来传递给线程函数。这些线程将共享这些可变数据对象。
我们在booth中使用了两个doChore()函数。可以在未来改进程序,以便让线程除了进行i=i-1之外,做更多的操作,比如打印剩余票数,找钱,或者喝口水之类的。第一个doChore()依然在Lock内部,所以可以安全地使用共享资源 (critical operations, 比如打印剩余票数)。第二个doChore()时,Lock已经被释放,所以不能再去使用共享资源。这时候可以做一些不使用共享资源的操作 (non-critical operation, 比如找钱、喝水)。我故意让doChore()等待了0.5秒,以代表这些额外的操作可能花费的时间。你可以定义的函数来代替doChore()。
OOP创建线程
上面的Python程序非常类似于一个面向过程的C程序。我们下面介绍如何通过面向对象 (OOP, object-oriented programming,参看Python面向对象的基本概念和Python面向对象的进一步拓展) 的方法实现多线程,其核心是继承threading.Thread类。我们上面的for循环中已经利用了threading.Thread()的方法来创建一个Thread对象,并将函数booth()以及其参数传递给改对象,并调用start()方法来运行线程。OOP的话,通过修改Thread类的run()方法来定义线程所要执行的命令。
复制代码
# A program to simulate selling tickets in multi-thread way
# Written by Vamei
import threading
import time
import os
# This function could be any function to do other chores.
def doChore():
time.sleep(0.5)
# Function for each thread
class BoothThread(threading.Thread):
def __init__(self, tid, monitor):
self.tid = tid
self.monitor = monitor
threading.Thread.__init__(self)
def run(self):
while True:
monitor['lock'].acquire() # Lock; or wait if other thread is holding the lock
if monitor['tick'] != 0:
monitor['tick'] = monitor['tick'] - 1 # Sell tickets
print(self.tid,':now left:',monitor['tick']) # Tickets left
doChore() # Other critical operations
else:
print("Thread_id",self.tid," No more tickets")
os._exit(0) # Exit the whole process immediately
monitor['lock'].release() # Unblock
doChore() # Non-critical operations
# Start of the main function
monitor = {'tick':100, 'lock':threading.Lock()}
# Start 10 threads
for k in range(10):
new_thread = BoothThread(k, monitor)
new_thread.start()
复制代码
我们自己定义了一个类BoothThread, 这个类继承自thread.Threading类。然后我们把上面的booth()所进行的操作统统放入到BoothThread类的run()方法中。注意,我们没有使用全局变量声明global,而是使用了一个词典monitor存放全局变量,然后把词典作为参数传递给线程函数。由于词典是可变数据对象,所以当它被传递给函数的时候,函数所使用的依然是同一个对象,相当于被多个线程所共享。这也是多线程乃至于多进程编程的一个技巧 (应尽量避免上面的global声明的用法,因为它并不适用于windows平台)。
上面OOP编程方法与面向过程的编程方法相比,并没有带来太大实质性的差别。
其他
threading.Thread对象: 我们已经介绍了该对象的start()和run(), 此外:
join()方法,调用该方法的线程将等待直到改Thread对象完成,再恢复运行。这与进程间调用wait()函数相类似。
下面的对象用于处理多线程同步。对象一旦被建立,可以被多个线程共享,并根据情况阻塞某些进程。请与Linux多线程与同步中的同步工具参照阅读。
threading.Lock对象: mutex, 有acquire()和release()方法。
threading.Condition对象: condition variable,建立该对象时,会包含一个Lock对象 (因为condition variable总是和mutex一起使用)。可以对Condition对象调用acquire()和release()方法,以控制潜在的Lock对象。此外:
wait()方法,相当于cond_wait()
notify_all(),相当与cond_broadcast()
nofify(),与notify_all()功能类似,但只唤醒一个等待的线程,而不是全部
threading.Semaphore对象: semaphore,也就是计数锁(semaphore传统意义上是一种进程间同步工具,见Linux进程间通信)。创建对象的时候,可以传递一个整数作为计数上限 (sema = threading.Semaphore(5))。它与Lock类似,也有Lock的两个方法。数据分析师培训
threading.Event对象: 与threading.Condition相类似,相当于没有潜在的Lock保护的condition variable。对象有True和False两个状态。可以多个线程使用wait()等待,直到某个线程调用该对象的set()方法,将对象设置为True。线程可以调用对象的clear()方法来重置对象为False状态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12