
Python多线程与同步 (threading包)
Python主要通过标准库中的threading包来实现多线程。在当今网络时代,每个服务器都会接收到大量的请求。服务器可以利用多线程的方式来处理这些请求,以提高对网络端口的读写效率。Python是一种网络服务器的后台工作语言 (比如豆瓣网),所以多线程也就很自然被Python语言支持。
(关于多线程的原理和C实现方法,请参考我之前写的Linux多线程与同步,要了解race condition, mutex和condition variable的概念)
多线程售票以及同步
我们使用Python来实现Linux多线程与同步文中的售票程序。我们使用mutex (也就是Python中的Lock类对象) 来实现线程的同步:
# A program to simulate selling tickets in multi-thread way
# Written by Vamei
import threading
import time
import os
# This function could be any function to do other chores.
def doChore():
time.sleep(0.5)
# Function for each thread
def booth(tid):
global i
global lock
while True:
lock.acquire() # Lock; or wait if other thread is holding the lock
if i != 0:
i = i - 1 # Sell tickets
print(tid,':now left:',i) # Tickets left
doChore() # Other critical operations
else:
print("Thread_id",tid," No more tickets")
os._exit(0) # Exit the whole process immediately
lock.release() # Unblock
doChore() # Non-critical operations
# Start of the main function
i = 100 # Available ticket number
lock = threading.Lock() # Lock (i.e., mutex)
# Start 10 threads
for k in range(10):
new_thread = threading.Thread(target=booth,args=(k,)) # Set up thread; target: the callable (function) to be run, args: the argument for the callable
new_thread.start() # run the thread
我们使用了两个全局变量,一个是i,用以储存剩余票数;一个是lock对象,用于同步线程对i的修改。此外,在最后的for循环中,我们总共设置了10个线程。每个线程都执行booth()函数。线程在调用start()方法的时候正式启动 (实际上,计算机中最多会有11个线程,因为主程序本身也会占用一个线程)。Python使用threading.Thread对象来代表线程,用threading.Lock对象来代表一个互斥锁 (mutex)。
有两点需要注意:
我们在函数中使用global来声明变量为全局变量,从而让多线程共享i和lock (在C语言中,我们通过将变量放在所有函数外面来让它成为全局变量)。如果不这么声明,由于i和lock是不可变数据对象,它们将被当作一个局部变量(参看Python动态类型)。如果是可变数据对象的话,则不需要global声明。我们甚至可以将可变数据对象作为参数来传递给线程函数。这些线程将共享这些可变数据对象。
我们在booth中使用了两个doChore()函数。可以在未来改进程序,以便让线程除了进行i=i-1之外,做更多的操作,比如打印剩余票数,找钱,或者喝口水之类的。第一个doChore()依然在Lock内部,所以可以安全地使用共享资源 (critical operations, 比如打印剩余票数)。第二个doChore()时,Lock已经被释放,所以不能再去使用共享资源。这时候可以做一些不使用共享资源的操作 (non-critical operation, 比如找钱、喝水)。我故意让doChore()等待了0.5秒,以代表这些额外的操作可能花费的时间。你可以定义的函数来代替doChore()。
OOP创建线程
上面的Python程序非常类似于一个面向过程的C程序。我们下面介绍如何通过面向对象 (OOP, object-oriented programming,参看Python面向对象的基本概念和Python面向对象的进一步拓展) 的方法实现多线程,其核心是继承threading.Thread类。我们上面的for循环中已经利用了threading.Thread()的方法来创建一个Thread对象,并将函数booth()以及其参数传递给改对象,并调用start()方法来运行线程。OOP的话,通过修改Thread类的run()方法来定义线程所要执行的命令。
复制代码
# A program to simulate selling tickets in multi-thread way
# Written by Vamei
import threading
import time
import os
# This function could be any function to do other chores.
def doChore():
time.sleep(0.5)
# Function for each thread
class BoothThread(threading.Thread):
def __init__(self, tid, monitor):
self.tid = tid
self.monitor = monitor
threading.Thread.__init__(self)
def run(self):
while True:
monitor['lock'].acquire() # Lock; or wait if other thread is holding the lock
if monitor['tick'] != 0:
monitor['tick'] = monitor['tick'] - 1 # Sell tickets
print(self.tid,':now left:',monitor['tick']) # Tickets left
doChore() # Other critical operations
else:
print("Thread_id",self.tid," No more tickets")
os._exit(0) # Exit the whole process immediately
monitor['lock'].release() # Unblock
doChore() # Non-critical operations
# Start of the main function
monitor = {'tick':100, 'lock':threading.Lock()}
# Start 10 threads
for k in range(10):
new_thread = BoothThread(k, monitor)
new_thread.start()
复制代码
我们自己定义了一个类BoothThread, 这个类继承自thread.Threading类。然后我们把上面的booth()所进行的操作统统放入到BoothThread类的run()方法中。注意,我们没有使用全局变量声明global,而是使用了一个词典monitor存放全局变量,然后把词典作为参数传递给线程函数。由于词典是可变数据对象,所以当它被传递给函数的时候,函数所使用的依然是同一个对象,相当于被多个线程所共享。这也是多线程乃至于多进程编程的一个技巧 (应尽量避免上面的global声明的用法,因为它并不适用于windows平台)。
上面OOP编程方法与面向过程的编程方法相比,并没有带来太大实质性的差别。
其他
threading.Thread对象: 我们已经介绍了该对象的start()和run(), 此外:
join()方法,调用该方法的线程将等待直到改Thread对象完成,再恢复运行。这与进程间调用wait()函数相类似。
下面的对象用于处理多线程同步。对象一旦被建立,可以被多个线程共享,并根据情况阻塞某些进程。请与Linux多线程与同步中的同步工具参照阅读。
threading.Lock对象: mutex, 有acquire()和release()方法。
threading.Condition对象: condition variable,建立该对象时,会包含一个Lock对象 (因为condition variable总是和mutex一起使用)。可以对Condition对象调用acquire()和release()方法,以控制潜在的Lock对象。此外:
wait()方法,相当于cond_wait()
notify_all(),相当与cond_broadcast()
nofify(),与notify_all()功能类似,但只唤醒一个等待的线程,而不是全部
threading.Semaphore对象: semaphore,也就是计数锁(semaphore传统意义上是一种进程间同步工具,见Linux进程间通信)。创建对象的时候,可以传递一个整数作为计数上限 (sema = threading.Semaphore(5))。它与Lock类似,也有Lock的两个方法。数据分析师培训
threading.Event对象: 与threading.Condition相类似,相当于没有潜在的Lock保护的condition variable。对象有True和False两个状态。可以多个线程使用wait()等待,直到某个线程调用该对象的set()方法,将对象设置为True。线程可以调用对象的clear()方法来重置对象为False状态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23