京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017年数据分析的十大趋势解读
1.可视化
可视化会向整个信息产业链发展,不再仅仅限于数据分析了,而且新技术的出现,也将会加速发展。
2.规模车向组合发展
语文学的进步把大数据焦点从规模转向组合式发展,将实现大数据新一转的发展,而且不同来源的数据组合在一起可以重复使用,还有可能带来更加可靠的数据分析和数据价值。
3.云端储存数据的发展
以前传统的BI存储一般都是企业内部的,而且随着不断发展,数据也会越来越多,针对数据的增长,很多企业都会慢慢选对云端布置数据,尽管安全性和保密性仍是现在的困难,但是云端部置仍是方向。
4.超前分析
以前企业里的数据分析师要根据数据对市场、经济的发展进行预测,而事实上这是大部份都是线性分析,而目前正在向超前分析发展,也就是数据分析师利用数据模型、数据算法,在可视化的平台上进行分析和探索,从而完成超前分析。
5.数据与真实世界的结合
以前在数据信息化分析过程中,都是做的数据虚拟性分析,和现实世界交互很少,而pokemon go就是很好的解决了这上方面的问题,很好把数据分析与现实世界结合在一起了,从而完成对现实世界的分析而提供更多有用的事实。
6.自服务可视化商品
随着可视化的不断发展,很多企业也希望可以利用信息进行分析与探索,但是数据是分散的,不是统一通过IP系统来进行判断的,需要经过不同的部门、区域汇集到不同的企业部门。但是可视化分析工具一旦成为商品,那么企业应用可视化分析将会进一步减少很多成本。
7.新一代的BI将取代传统BI
随着可视化分析的不断发展,一旦被商业化,那么新一代的企业在利用分析时,将会更大的节省很多时间,各种平台的兼容性也将不再是问题。当新的BI取代传统BI的时候,也将会给用户带来新的灵活需求服务。
8.定制化分析应用和应用中的分析
尽管如此,但是仍有很多企业的员工暂时不能享受到这些先进的分析技术,但是可视化分析的发展,将会帮助企业管理层等需要数据分析的人更加便捷快速的了解到需要的数据和信息。
一旦这些分析技术应用到业务流程、程度应用、操作应用等具体场景中的时候,那么使用者就很方便的查找到他们想要的数据信息,而对于怎么分析挖掘这些工作就不用去考虑了。
9.生态系统化
一个企业里,每个人都有不同的价值观、想法,每个部门都有对应的数据,如果利用生态系统分析,把数据和计算、部门等有效的结合起来,就会帮助企业建立更好的分析决策。
10.多环境混合发展
以前企业部置可视化应用只在企业内部IT平台上应用,但是云计算的出现与发展,可以把外部和内部的数据进行扩展分析,像私有云、公共云等云计算服务,都可以帮助企业很好的利用这些数据分析,从而实现给用户提供更多的扩展与服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03