
从大数据到信用数据信息共享
近年来,中国保险业积极顺应新形势、加快运用新技术、大胆探索新模式,互联网保险已经走上迅猛发展的快车道。整个“十二五”期间,互联网保费规模从2011年的32亿元飙升至2015年的2234亿元,增长约69倍,在保险业总保费中的比重从0.2%攀升至9.2%。与此同时,专业互联网保险公司试点不断增多。互联网保险已经成为中国保险业转型发展不可替代的重要驱动力。
尤其值得关注的是,诸多行业已经将大数据的创新应用上升为战略高度,作为大数据的使用者和生产者,保险业也不例外,互联网保险更是如此。大数据除了在完善客户行为分析、推动产品创新和精准定价、提升保险服务价值、创新保险营销模式外,还能够在一定程度上解决信息不对称造成的问题,提高保险公司的风控和反欺诈能力。未来保险行业最核心的竞争力将由大数据构成,保险业的产品设计、定价、营销策略、客户服务、风险控制和反欺诈等都会发生深刻变化,数据是保险业存在和发展的基石。
中国保险行业协会日前发布的《2016中国互联网保险行业发展报告》指出,传统保险主要基于保险公司精算能力以及客户数据进行保险产品开发和运营分析,而新兴技术比如区块链、人工智能、物联网、基因诊疗等,能够极大改变传统保险公司的成本结构,进而在为客户提供服务方面具有某种明显的优势,比如价格、服务质量、体验等方面,这种成本优势可以直接转化为保险公司的竞争优势。
风控方面。首先,保险公司可利用大数据收集由移动互联网及移动智能设备技术终端得到的关于被保险对象的综合信息,从而更好地把握客户所转嫁风险,进行有效的风险控制;其次,保险公司通过大数据技术将业务数据、管理数据、社会数据等各种数据整合分析后,提升内部管理能力,并且增强公司的风险防范能力。
反欺诈方面。保险公司通过外部数据实时获得客户以往的购买信息、理赔信息,确认客户是否购买超额保险,或重复保险,拒绝可能出现欺诈行为的客户;保险公司还可通过外部数据实时获得客户的出险信息,如客户在高速公路上驾车发生事故后向交警报案,保险公司就能够及时获得报案信息,或者从第三方直接获取客户的医疗、汽车维修等数据,防止保险欺诈的出现。
总之,大数据有助于保险公司更直接、更准确地了解市场、客户,精准定价和开发适宜的保险产品,提升客户的体验,加强内部管理等。其最终的结果是通过大数据的应用来扩大保险公司的盈利空间,而且促进优质客户群体的持续增长,从而形成良性循环。更值得一提的是,大数据的应用将加速互联网保险渠道向“业态”转化,即从保险产品的开发、保险信息咨询、保险计划书设计、销售到理赔等后期服务所有环节都依托互联网来完成,改变目前互联网更多是作为单纯的保险销售渠道的状况,实现互联网保险从“保险互联网化”的简单销售模式向真正的互联网保险“业态”的发展。
但是,尽管各家保险公司都掌握着庞大的数据,但目前保险公司的很多数据是相互独立的,对外也基本独立。即便有交互,也仅局限于小范围,这极不利于保险公司业务和反欺诈工作的开展。而数据信息共享可以使更多的机构更充分地使用已有数据资源,减少资料收集、数据采集等重复劳动和相应费用,而把精力重点放在开发新的应用程序及系统集成上。
中国互联网金融协会本着“服务会员、服务行业”的宗旨,努力推动互联网金融行业信用建设工作。协会作为独立第三方牵头搭建了互联网金融服务平台。打通不同机构间的“信息孤岛”,将信用数据有效的整合起来,作为传统征信的补充,依法合规的提供公正公平的互联网金融征信服务,实现信用信息充分运用。目前自平台正式开通仅一个月内,已收集信用数据近千万条。
据了解,协会下一步将积极推动“部门联动,社会协同”,建立完善“守信联合激励和失信联合惩戒制度”。会加大与最高人民法院以及各社会征信服务机构的合作,进一步扩大共享信息的覆盖面和应用范围,充分发挥共享平台的网络优势和规模效应。进而建立跨地区、跨部门、跨领域的联合激励与惩戒机制,真正做到让守信者受益、失信者受限,共同营造诚实守信的社会氛围,支持和帮助互联网金融企业降低风险成本,收获最大效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28