
大数据加快健康险创新步伐
长期以来,我国商业健康险发展始终面临机遇与挑战并存的局面,一方面,人类健康多变性和财富积累驱使国人对健康的诉求加大,使得商业健康险发展前景良好。自2012年起,商业健康险增速开始超越寿险,2015年出现爆发式增长,原保费增长率高达51.87%。另一方面,高增速下的健康险业务却陷入持续亏损的尴尬局面。究其根本原因,就在于险企与医疗机构尚未结成完全的利益共同体,导致客户健康数据积累不足、赔付成本过高以及风控薄弱等问题凸显。因此,在“互联网+健康险”的发展趋势和大数据技术的助推下,商业健康险的运营效率和服务水平有望得到大幅提升。
健康险发展面临窘境
专家分析指出,目前我国健康险发展的窘境之一在于,信息化水平低下所导致的保险产品设计欠科学。健康险的成长历程,相对漫长的人类健康变化周期还很短暂,因此行业对于死亡率、发病率、住院率、治疗方案效果和医疗费用等基础数据的掌握和计算较为匮乏,产品险种单一且价格昂贵。还有产品设计相关的医疗服务类型、适宜人群、人均成本以及人均收益等数据也未获得精确测算。此外,保险公司间、保险公司与医疗结构间的信息共享欠缺影响了保费费率、理赔率的核定及保险产品创新。
窘境之二在于信息不对称和风控不利双压下的逆向选择和道德风险问题比较严重。保险公司对于投保群体质量的监控力薄弱,增加了自身理赔负担,而险企通常只能以提高费率来应对赔付支出的上涨,如此恶性循环引发投保人的逆向选择。购买商业健康险的被保人面临不同医疗方案或药品时通常则高而选,医院在利益最大化驱使下也会建议使用高费用方案或滥开药、开贵药。不但使得理赔成本居高不下且已造成20%至30%的医疗资源浪费。正是因为保险公司对于投保人健康信息的掌握不完全,医学知识过于专业且复杂,导致患者信息缺失以及保险公司和患者难以介入监督医院对于诊疗记录、检查单等档案资料的管理,严重影响商业健康险的发展。
医疗大数据介入保险
险企与医疗机构有机结合成利益共同体并在医疗大数据的助推下有望获得双赢。
有业内人士分析,在这种结合下,大数据挖据技术可以在“4R”即Right timing(对的时间)、Right location(对的地点)、Right people(对的人)、Right product(恰当的产品)节点中发挥最大效用。
首先,保险营销的最佳时间不应是在已患病者诊疗期间而是潜在病患进行医疗咨询的过程中,而医疗咨询的背后需要丰富的医院病历作为强大的数据来源。通过对病历的数据挖掘,可以整理出体征、症状、化验指标、影像检查标志物,与疾病之间的关联关系及与药品和手术等治疗手段之间的关联关系,形成所谓的医疗知识图谱。此外,医疗知识图谱也可以运用于核对诊断结果、用药和手术的合理性,实现诊断和治疗的全程核保,形成高精度风控。
其次,网络是当今最高效的营销平台,所以,在移动互联网大流量的入口提供免费医疗咨询,顺势推荐健康险产品便是选择了“对的地点”。
再次,通过医疗咨询可以收集用户的健康状况和病情信息,运用大数据技术进行深度分析,将准确的结果报告给客户,以赢得其对保险公司专业水平的信赖,为客户量身定制相关增值服务,做到精准推荐健康险产品。
最后,大数据技术可以从服务与定价方面提高健康险产品设计的科学性与合理性。不仅可以测算出在不同的当前健康状态下,未来罹患某种疾病的概率以及各类疾病的平均诊治费用,还可以从海量病历中,通过跟踪多位患者的病情发展,计算出疾病转化率,从而更准确地制订出某病种的报销额度以便合理给产品定价。
健康险模式亟待创新
另有专家预测,通过紧密结合医疗大数据、智能诊疗与健康险来实现赢利,是未来2至3年健康险模式探索之路上新的里程碑。
北京大数医达科技有限公司创始人邓侃表示,对于常见病的智能诊断和治疗,可以借助面向医生的智能临床助手或面向患者的智能自诊工具实现。对于慢性病的管理,许多保险机构参考国外经验,投资设立了远程监控系统,在患者家中捕捉临床数据,并传送给主治医生,以便及时捕捉危险信号。此类服务能帮助消费者预防疾病,而不只是在事后“亡羊补牢”。
目前国内市场上,已有多家保险机构将医疗大数据引入到健康险产品开发中。比如太保安联健康通过与阿里健康合作,将后者的大数据、风控引擎和人脸识别防作弊等技术融入理赔环节,形成行业控费的双保险安全体系。此举有助于公司改进产品定价及整个经营管理的决策。泰康在线通过对交易、社交、健康能力值等用户行为的大数据进行分析,目前已积累超过了8000万用户的多维度信息。并成立了远程在线顾问团队,可以基于大数据在线进行产品精准推荐。
大特保CEO周磊表示,要在数据分析中心的基础上,建立医疗服务平台、健康管理平台、保险服务平台,实现不同资源的实时互通。未来用户可通过大特保的平台,上传自己的健康数据、实时监测自己的健康指标、获取健康预警和解决方案。通过移动硬件进行日常健康管理,也可以在线问诊、预约医生,线下体检和就诊,后期还可在线远程复诊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17