京公网安备 11010802034615号
经营许可证编号:京B2-20210330
走进物联网的后台:大数据挖掘的方法与技术原理解读
长久以来,准确获知用户的需求和消费者对产品的满意度,以及竞争对手的规模与弹性,一直都是企业决策者想要却又似乎永远都无法彻底完成的任务。重要数据信息的缺失,使得企业运行很多时候都不得不流于盲人摸象。
互联网的发展,使得可被电子化检索的数据信息达到了天文数字。然而即便如此,人们离为全社会的各个角色进行精确的画像仍然有漫长的路程要走。想要进一步提升社会数据的完整性,由万物联网并自主产生和贡献数据是必要的前提。值得欣喜的是,以司南物联为代表的物联网企业已经在大数据的挖掘与利用领域取得了长足的进展。
本篇将带您走进物联网的后台,深入了解物联网时代的数据产生过程,以及科技企业如何利用这些数据为社会的生产生活服务。
物联网的信息和数据化价值
严格地说,任何基础信息都是自然和社会实体产生的,无论泥石、纸张、计算机甚至生物神经元,都只是人类用于记录信息的载体,并由人来将这些信息实现数据化。基于这些基础数据,人们会进行抽象、分析,并得出上层数据,这就是数据的挖掘;这些挖掘工作有些是纯学术的,有些则是有着明确的应用目标的,但无论如何,他们最终都将为生产生活服务。
在物联网设备出现之前,终端设备产生的数据像工作状态、故障情况、能耗情况等等,都是由人或设备记录,割裂地保存在各种电子和非电子介质之上。这种割裂的数据信息难以被大规模利用,更无法与外部数据实现协同,且可靠性也往往不如人意,社会元素无法根据这些数据被精准画像,不能形成有效追溯。
物联网技术出现之后,终端设备实现了直接联网,可以将自身产生的数据直接上传至云服务器,最大限度的保障了终端信息记录的完整性和可追溯性,并使得基于物联网数据进行的定向挖掘与利用成为了可能,在生产生活领域中转化成有效的生产力,真正地兑现了数据经济的价值。
探秘物联网数据中心:物联网信息的记录与二次挖掘详解
设备运行的基础数据被记录和上传至物联网云端数据库后,接受云服务后台的统一管理。但静态的数据本身无法转化成有效价值,想要发挥出终端数据的生产力,需要通过对基础数据进行二次挖掘。更早的数据库系统以关系型为主,而目前先进的物联网数据记录方案都采用了关系型和非关系型数据库结合的方式。下面,我们就透过领先的一站式物联网解决方案商——司南物联的云数据后台,来具体看一下终端数据在云数据中心是如何被统一管理、挖掘和利用的。
我们首先看一下司南物联云数据后台的菜单功能,大致可以分为设备信息和后台管理两大类。其中后台管理又包括管理员的授权分配、菜单管理、厂商和行业管理、设备管理等等,本篇我们更关心的是设备信息部分,也就是云后台中,对设备相关数据进行统一整理呈现的那些功能。
从司南物联的云后台系统来看,设备相关数据又包含了设备所关联的用户信息如年龄、性别、所在地和活跃度等等,以及设备的使用频次、各项功能的使用率、故障情况、上线规律等等。通过这些基础数据,开发者可以很方便地进行信息的提炼和数据的二次挖掘。比如,可以根据同一台设备不同功能被各个关联用户的启动情况,清晰的抽取出不同年龄、性别的用户对设备功能的使用偏好,这对相关企业后续针对每一类人群开发更具吸引力的产品和功能有着巨大的指导意义。
事实上,司南物联也确实以自身云平台数据为基础进行过定向挖掘,得出了多份有趣的智能产品数据报告,在行业内引起轰动。
云平台和数据后台:透析数据挖掘背后的技术
上面约略讲了一些云后台进行数据挖掘的例子,想必有读者已经在想,这些数据存储和挖掘,究竟是通过怎样的技术实现的。这里就顺便普及一下物联网云平台和数据管理后台的知识。
物联网是一门综合性的应用学科,在底层涉及感知器件、数据计算器件和机电功能器件等;在中间传输层涉及射频收发、通讯协议和数据编码、路由算法等技术;在应用层又涵盖了形形色色的行业和应用场景,可以说是世间万物,无所不包。这其中,为物联网数据提供支撑的云平台处于传输层,是一组具备强大分布式计算能力的服务器集群。正是这些服务器集群,日以继夜的收集和存储了来自世界各地甚至外层空间的数据信息,并遵循特定的程式和算法进行自动的数据挖掘和利用工作,承担着大数据分析与利用的基础工作。
额外提一点:基于云计算的网络服务可划分为SaaS、PaaS和IaaS三层。关于云服务的三层结构目前已经逐渐为人所知,这里就不做详述。值得注意的是,通常只有PaaS才能够被理解成“云平台”,而SaaS和IaaS在常规概念下并不具备平台属性,司南物联之所以能够独立提供大数据挖掘与利用服务,正是因为其拥有完全自主知识产权的运营级物联网云平台。
云平台是物联网大数据分析的基础,但是其背后的技术尤为复杂,就留在本文的姊妹篇中再做详细介绍,这里再多介绍一点数据管理后台的内容。数据管理后台是建立在物联网云平台上的系统,它是云端应用开发技术、数据库管理技术和专业数据算法的融合产物,同时也是物联网云平台的应用和延伸。基于云平台的开放特性,数据管理后台甚至可以调用外部平台上的数据,与自身数据进行整合挖掘,进一步提升了数据的完整性和应用价值。
孙子云:知己知彼,百战不殆。想在商战中立于不败,信息的收集是至关重要的。物联网的云平台和大数据分析技术,大大增强了企业获取产品和行业信息的能力,对企业生产力的提升有着巨大的价值。这也是为什么以司南物联为代表的物联网科技企业能够受到行业、资本乃至于政府层面的极大重视,从而得以协同各方力量,不断颠覆一个又一个行业的发展格局。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12