
大数据风险防控是抓手
上海国资委法规处处长陈昶认为,在国有企业当中如何开展法律部门主导下的合规工作,已成为公司法务的一个新的挑战。
上海交通大学凯原法学院副院长杨力表示,近年来,商业反腐的结构性治理出现了新的特点、格局和问题意识。虽然当下中国商业反腐已进入新纪元,但商业反腐的结构性治理仍待进一步加强。
企业应建立一套合规管理体系
“商业贿赂会给公司带来两类风险,一是行贿导致的合规风险,二是受贿导致的欺诈风险。”美国福特公司亚太区合规总监陈立彤表示,“合规风险往往是政府要求一个公司(或者个人)必须遵守某个法律规定,如果没有遵守,那么政府会对这个公司进行处罚;欺诈风险是指一个公司(或者个人)被骗了,从而遭受经济损失的风险,比如信贷风险。”
美国通用电气公司(General Electric Company,简称GE)大中华区首席合规官朱湘莲直言:“所有的丑闻都与董事会的无能和合规文化的缺失有关,成功的企业必然有着优秀的公司治理和合规文化。”
创立于1892年的通用电气,至今已走过120余年的路程。通用电气能够长治久安,一个很重要的原因就是根植于企业的合规文化。朱湘莲介绍,通用电器合规愿景,是建立一个世界级的企业合规文化,但合规愿景必须要通过公司的一整套体系来实现,否则的话只能是一个口号。
“要实现合规愿景,企业应该建立一个防范、监测和应对的体系,防范道德、合规及法律风险,在第一时间监测到问题的发生,迅速反应并有效应对。”朱湘莲表示,在防范方面,首先要有政策和流程,这样的政策是包括公司高管在内,都必须遵守法律法规和公司规章制度,并且需要具体的流程来确保政策。
2013年爆发的葛兰素史克中国公司行贿事件成为了一个标志性事件,涉及此事件的主要厂家葛兰素史克,利用贿赂手段谋求不正当的竞争环境。因涉嫌严重商业贿赂等经济犯罪,葛兰素史克中国公司的部分高管被依法立案侦查。该事件发生后,很多外企紧急成立了合规部,并招聘了高薪高职位的公司副总作为首席合规官、总合规官。
朱湘莲认为:“对于风险的发现和管控,必须要有一个合规团队。一个企业在中国或许有好几万名员工,但是只有一个合规官,是不可能把整个公司的合规做好的。”
《2015-2016反商业贿赂调研报告》主笔尹云霞指出,合规就是讲企业的人、财、事管好,企业应建立人、财、事三维立体的合规管控体系,并深入、持续建立合规文化,弘扬、鼓励合规文化的奖励举措,进行多样化、常态化的合规培训和理念灌输。
发挥大数据的作用
一家公司的贿赂行为最有可能被怎样发现?中国合规网的一则调查显示,其中的答案有:员工向公司举报、员工向政府机关举报、公司审计时发现、政府机构调查第三方后顺藤摸瓜、竞争者向政府举报等。
陈立彤指出:“这些传统的风险辨别方法,除了前三之外,其他对于公司来说都犹如噩梦般的存在,因为一旦政府机关介入调查,对于公司而言都会是滞后的,给公司带来的风险非常大,会面临被处罚的风险。”
是否有更好的结构性治理的风险管控方法?陈立彤认为,大数据分析平台是结构性治理的第一步,大数据风险防控是商业反腐结构性治理的抓手。
在陈立彤看来,结构性治理的反面是“零敲碎打”,而大数据管理体系就是结构的代名词。
企业如何通过大数据分析,成功实现风险控制?陈立彤表示:“传统上,一个公司的数据可能都是分割的,比如财务部门的数据和人力资源的数据,还有其他第三方的数据,不可能交集。但是通过大数据整合在一起,数据处理中心处理完毕以后,就会出现一个非常人性化的仪表盘,可以提前进行预警。”
通过大数据整合出来的读数,可能会出现一些意想不到的结果。例如,一个业务经理报销的业务发票的开具时间是他年假的时间,这里面可能就会有欺诈风险;一个明星销售员销售的数据非常漂亮,但是和他出差的数据结合在一起,会发现他的出差足迹遍布名山大川,这说明他可能是陪客户去玩,存在合规风险;应付账款的收款人在波兰,但那里实际并没有供应商,这可能有欺诈风险……
“对于结构性治理,大数据分析更加接近实时,更加精准,更加具有预防性和人性化。”陈立彤指出,大数据可以“解决大公司数据繁多、难以处理的痼疾,解决蛛丝马迹、人眼所不能发现的问题,可以实现对于全球合规的风控,且24小时全球无眠”。
政府执法与企业自查
自2015年以来,我国商业反腐立法工作进一步完善,其中最突出的表现是刑法修正案(九)的审议通过并实施。刑法修正案(九)对关于贿赂犯罪的条文进行了多处修改,改变了以往“重受贿、轻行贿”的误区,加大了对行贿罪的处罚力度。
随着立法日臻完善,执法层面也日趋严格。对于政府而言,如何更好地对商业反腐进行结构性治理?如何能用更少的资源产生更大的影响力?尹云霞表示,美国政府在西门子全球行贿案中发挥的作用提供了很好的范例。
西门子全球行贿案是目前海外反腐败法罚款最高的案件。2006年,西门子卷入腐败丑闻,商业信誉和企业形象在全球都面临危机。为了挽救企业业务和声誉,随后西门子展开自救措施。西门子花费7.45亿美元,聘请了专家来对企业进行内部调查。之后,美国政府要求西门子聘请外部专家来帮助企业进行内部的监督,通过几年时间建立了一个黄金合规体系。
“美国政府执法过程当中充分调动了企业的能动性。政府让企业进行内部自查,如果进行自查,便减少相对的处罚;另外,鼓励企业建立合规制度,美国政府执法过程当中,如果企业建立了有效的合规制度的话,对于企业的处罚也可能会有减免。”尹云霞介绍。
据了解,为了取得客观可信的调查结果,这项漫长的自查活动评估了5000多个咨询协议,检查了0.4亿个银行账户报表、1亿份文件、1.27亿次交易,进行了无数谈话和调动。
这一系列有力的自查措施,让西门子在最短时间内结束了在德国和美国的法律诉讼程序,并首次因为积极合作而被减少了罚款。同时,西门子收获了合规管理体系的完善和合规理念的深入人心。
尹云霞表示:“政府通过这样的执法,其实实现了一个辐射型执法效应,即通过对一个企业的合规,影响了成千上万的企业。一方面,企业在海外投资的公司,必须要符合相应的合规要求;另一方面,供应商、经销商以及和公司有业务往来的合作伙伴和第三方的非法行为也会使企业承担相应的法律责任。所以,企业的合规政策里面要求相应的第三方必须也是合规的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29