
数据科学家/统计学家应该养成哪些好习惯
1、永远不要轻信自己的分析结果,多用业务和常识去检验。
很多时候,我们的分析都是含有一些潜在的假设,而在分析过程中被忽略。比如最经典的案例是在1948年,盖洛普错误地预测了杜威能击败杜鲁门而当选总统,原因是多方面的,但是抽样中的潜在不平均是不可否认的!再比如有个人分析结果得到刚毕业的专科的平均薪资比同专业的本科要高,就找一堆理由来说明这个结论。但是领导说这个不符合常识,打回去重新分析。之后发现是因为样本男女比例不均衡导致的。所以,我们不要轻信自己的分析结果,尤其是不能给自己的分析找正向的理由!因为只有你找理由,总会能给自己的结论找到一堆理由。有多从实际出发,如果不符合常识,那就更要多方面论证,才能发声!否则,就会是个笑话!
2、阅读人文:数据科学不仅是一门科学,也是一门艺术。
数据科学,你可以认为是一门探索人性的科学。我经常跟周围做数据或者IT人的说的一点是,因为我们是做数据或者写一些代码的,这里的数字是1就是1,不会是2,TRUE了就不会是FALSE,所以做久了,人容易偏执,不会享受生活,那就无法把艺术引进!这里也举一个例子,美国有一家大型商场,业务经理想能否预测一个客户是否是孕妇,以此来针对性的营销呢?之后他们的数据科学家通过分析找到了一个模型来预测。那么他们是直接把孕妇相关产品推荐给客户吗?不是的,因为这个数据科学家不仅是数学好还是一个社会学家,他说如果全部推荐相关产品,那么客户会觉得自己的隐私被侵犯,甚至会觉得反感,所以他的策略是把真正想要推荐的东西放在一堆其他东西里。当然,这里只是简写,实际过程非常有趣。
3、了解行业信息和业务信息
这一点非常重要。分析和挖掘,最终都是要落到具体的业务上来的。所以做数据,不能脱离业务和行业规律。了解行业信息,能够让你在分析的时候更加的接地气、更好的把握分析框架!尤其是,联系刚才说的第一点,你积累的行业信息和业务信息都会帮助你检验你的分析,同时让你更还的认识到什么样的分析是有价值的分析。此外,对于业务中的乱七八糟的各种概念更是要深入理解,不能停留在表面。有时候,一个业务概念理解失误(比如0是否有参与计算),会导致分析出完全相反的结论。据说,数据分析会导致经验累积加速,简单的说一般业务人员工作10年的工作经验,数据分析5年就能掌握。
4、好奇心与多沟通
爱因斯坦说过,提出一个好问题比找到一个合适的答案更重要!在我个人经验中,按照既定的一些分析框架分析,一般都只是完成了既定的任务而已。但是,你对分析中的一些异常多问几个为什么,很容易找到一些业务的突破口。比如你分析销售业绩,你发现一个人,成单比例总是比别人高,甚至有时候比特别有经验的人还高,你就问问为什么呢?否则,你就只能发现这个数字而已。后来,你通过分析和直接询问等方法,发现他发现了新注册的用户容易成单,所以每天盯着新用户呢!当然,这样的例子是比较多的,比如为什么要让用户自己选择一些信息呢?然后一个数据产品就出来了。
5、多实践与多走一步
这里涉及到模型了,也是我个人做的比较多的地方。在数值计算(或者任何其他工程领域)里,知道一个东西的基本算法和写出一个能在实际中工作得很好的程序之间还是有一段不小的距离的。有很多可能看似无关紧要的小细节小 trick,可能会对结果带来很大的不同。当然这样的现象其实也很合理:因为理论上的工作之所以漂亮正是因为抓住了事物的主要矛盾,忽略“无关”的细节进行了简化和抽象,从而对比较“干净”的对象进行操作,在一系列的“assumption”下建立起理论体系。但是当要将理论应用到实践中的时候,又得将这些之前被忽略掉了的细节全部加回去,得到一团乱糟糟,在一系列的“assumption”都不再严格满足的条件下找出会出现哪些问题并通过一些所谓的“engineering trick”来让原来的理论能“大致地”继续有效,这些东西大概就主要是 Engineer 们所需要处理的事情了吧?这样说来 Engineer 其实也相当不容易。这样的话其实 Engineer 和 Scientist 的界线就又模糊了,就是工作在不同的抽象程度下的区别的样子。
在工作和平时学习练习中,都是这样。很多人问的太多,做的太少,导致眼高手低。比如你问用Ensemble,会怎么怎么样呢?对哇,很多人能问这个问题,但是就是不去试一试。再比如,有偏样本的问题,有过抽样、欠抽样、阈值调整等等方法,都可以去自己实践一下,才会有更加直观的认识,否则只停留在讨论阶段是没用的。
多走一步,每个问题都是自己成长的阶梯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29