
[案例]:美零售商用大数据锁定客户
为了锁定个人消费者,美国家居用品零售商Williams-Sonoma把多来源的数据聚合到一起,通过Hadoop平台构建起具有在线营销洞察力的统一仪表盘。
当你将大数据、统计模型和销售分析结合在一起会发生什么呢?如果你是美国家居用品零售商Williams-Sonoma,那么你将获得每天处理5000万行数据的能力,将能够有针对性地向大量个人消费者进行营销。
Williams-Sonoma是一家年营收接近40亿美元、拥有3万名员工的上市企业。该公司负责客户分析的副总裁Mohan Namboodiri目前正试图提升该公司的营销分析水平。Williams-Sonoma并不认为,在线广告和电子邮件会比针对特定客户的营销更为有效。该公司正在试图找到一种办法,以全面获得营销活动归因。也就是说,理解每次针对个人消费者的促销活动的效果。这能够让企业重新分配营销活动预算,以锁定个人消费者,而不是特定的客户群体。
营销分析在过去的用途十分简单,一般是追踪活动代码到你的客户,以了解活动的效果。相对于分类、直接邮寄、群发电子邮件、广告、电话推销等方式,营销活动数据相对易于管理。
营销工具、数据来源和数据规模正在持续增长,其中包括手机短信、横幅广告、在线搜索活动、店内促销、会员卡、鼠标点击率等。借助于涵盖客户数量统计、信用评分等第三方数据,数据来源正变得越来越多。此外,还有一些不受营销控制的因素,比如季节购买习惯和客户购买习惯。最终,管理营销系统会面临诸多挑战,许多营销策略取决于不同的应用或机构。
最新的营销系统使得针对不同客户量身制订新品推广、打折促销或消费积分方案变得更加容易。但是,为了发挥最大效果,营销人员需要完全清楚哪些方案针对哪些客户,同时注意不让他们的客户感到厌烦。例如,经常性地群发电子邮件。这些做法会导致难以观察客户活动,以及难以以最有效的方式进行营销。
问题是多方面的。由于容量、速率和多样性等因素,这实际上是一个大数据问题;各种各样互不相连的系统,使得其成为了一个数据孤岛问题;利用给定因素,试图理解针对个人消费者的营销活动效果,是一个统计分析问题。例如,一些客户可能只会在圣诞节期间对电子邮件促销做出回应,而另外一些客户可能会点击电子邮件促销,并在全年进行购买。
通过营销渠道的加权,营销归因仪表盘显示出了针对每名客户的销量。
为了对信息进行准确评估,你需要一个能够直观显示活动与购买行为之间关联关系的仪表盘。Williams-Sonoma选择的营销归因SaaS解决方案由UpStream创建。UpStream开发团队采用了一个综合商业背景、营销、计算机科学、数学、物理和统计的多学科解决方案,来解决复杂的商业问题。
为了应对大数据和数据孤岛的挑战,UpStream的托管服务使用Hadoop作为ETL(提取/转换/加载)中间件和分布式处理数据仓库。Hadoop被用于准备来自营销程序的数据,对客户行为进行评分。Williams-Sonoma向UpStream提供其内部的营销数据(包括网站浏览、移动网站、客户服务中心等)。UpStream将把它们与来自Experian等代理商的第三方客户数据汇聚在一起。
数据聚合能够让UpStream完成许多任务。首先,它们能够通过Hadoop评估综合数据,并迅速推出大量针对个人消费者的营销活动,处理每个客户端每天5000多万的评分。其次,它们让Williams-Sonoma在所有相关活动、与零售商店的互动、在线营销和采购中都能够拥有一个统一的仪表盘。
数据聚合还让统计分析成为了可能。UpStream通过用R语言编写的生存回归模型(即众所周知的风险模型或时间至事件模型)创建了一种全新的解决方案。这些模型在卫生保健行业已经被成功的应用,不过其应用环境仅为涵盖数百名病人的小型数据集。
UpStream改进了这些模型,以为零售商处理特定的营销,分析出每次针对客户采购的营销活动的加权效果。在这种情况下,预算能够被更为有效地分配。为了让解决方案的这一部分更具扩展性,UpStream使用了Revolution Analytics公司的商业版R语言。模型能够根据营销活动预测指定客户的购买可能性。
UpStream和Williams-Sonoma正在继续合作,以针对个人消费者创建定制的、目标明确的营销活动。其模型设计使得他们能够确定哪种营销方式对哪些客户起作用(例如电子邮件相比传统邮件的营销效果),以及哪些客户适用于横幅广告等在线营销活动。
尽管Williams-Sonoma并没有公布详细结果,不过Namboodiri透露,结果非常令人鼓舞,虽然目前还没有确切的数据,但是在规模和质量上均有所提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10