京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据创业,绕开BAT,找准红利方可成功
随着大数据时代的到来,其中产业链的红利也将逐渐呈现,催生了诸多相关的创业项目。笔者以一家定义为大数据加工、分析、流通的创业公司“云见”为例,探讨下数据在流通过程中增值的可能性。
大数据的红利在哪?
处在大数据最上游的是数据产生端,其中最有代表性的是BAT这样的企业。与数据生存者对应的另一端是需求端,即服务主体,同样是包括政府、机构、企业、个人。而处在中间的则是数据的处理加工商,如云见这类公司。
那么,红利在哪里呢?首先,数据生产端红利已尽。BAT因为自有数据资源可以自嗨,比如百度有“百度迁徙”、“百度精算”;阿里有 “阿里云”、“支付宝-花呗”;腾讯有 “腾讯云分析”,BAT自产自销模式代表了大部分拥有数据源的玩家。
那么剩下的红利就集中在了中间部分,其中有两种模式:
模式一:与业务场景结合,做产业类平台,如同花顺、恒生电子。
模式二:数据的再加工利用,即从运营商、互联网公司获取原始数据信息来进行分析,再提供给用户关于价值和趋势的信息以换取价值。
相比于模式一的深耕,模式二因为进入门槛、资源要求度都相对较低,所以云见选择以这种形式进行切入。
既然类似云见这样的小微企业,先天没有数据源的优势,那么如何让数据在流通过程中增值呢?
让数据在流通过程中增值的方法
(1)降低数据来源的成本
最普遍的方法包括通过第三方购买数据、爬虫爬回数据、合作方授权数据、免费的开放数据。数据获取中肯定要付出人力、资金成本,所以解决数据源是大数据创业公司首要面临的问题。
目前行业做得较创新的是“数据堂”,这家作为挂牌新三板的第一个大数据资源公司,采用“众包”形式,由服务企业提出需求,数据堂直接通过众客堂采集数据。同时,众客堂用户也是处理数据的方式,可甄别数据真伪和有效性。
当然,相比于成熟型的数据公司,云见还未具备这样的数据采集实力,所以其倾向于用合作授权数据的形式,低成本获得独家数据源。
(2)着眼于未来的数据加工
数据加工包括整理合并、优化、排错等方面,数据本身庞杂无章,精炼后的数据能够发掘其中的规律性而进行精准应用。当然,这只是数据加工的通用价值,大数据创业公司关键要解决数据价值深化或兑现的问题。
云见做出两个选择:
与垂直领域对接发现价值
因为消费升级、移动互联网的人口红利消失,那些大规模的对受众社会属性不加区分的水平产品很难生产。在大数据时代,通用型信息的价值正减小,任何拥有数据加工能力的人都可说出用户画像,但针对垂直领域的数据价值需求则需深耕才能解决。
预测未来比看见现在更重要
云见从成立之初就专注在“算法”上,用模式识别的方式形成自己的经验库以预测用户的未来行为,区别于竞争对手赚解决方案服务费的方式,这也符合其技术驱动型团队的特点——更看中“稳”而不是“快”。
(3)用“mall”的形式
作为大数据元老级公司的“数据堂”15年推出了国内第一家网上数据商城“Data Mall”,数据商城的形式最大化地提高了数据交易效率,简单理解就是在通用的入口,用户可以进行重复消费;同时,平台方通过商城获得接入用户的机会,用户成为“传感器”——作为流量入口,又将数据反馈至商城上,担任消费端和供给端的双重角色。
云见也在筹建这样的“轻模式”,除了上述提及的优势,考虑到基于用户需求的非标准化特性,API接口(应用程序编程接口)本身是很难进行标准化的,所以“mall”的呈现方式在一定程度上解决了API形式上的标准化,同时,“mall”改变了传统打包服务的模式,减少在销售、推广、人力上的成本。
当然,大数据创业的成功还有一部分因素是依赖在大势上。
(4)政策上的大势
2015年7月,国务院办公厅发布《关于运用大数据加强对市场主体服务和监管的若干意见》,这是顺应大数据时代潮流,运用现代信息技术加强政府公共服务和市场监管,推动简政放权和政府职能转变的重要政策文件。
文件表示将充分认识运用大数据加强对市场主体服务和监管的重要性、运用大数据提高为市场主体服务水平、运用大数据加强和改进市场监管、推进政府和社会信息资源开放共享、提高政府运用大数据的能力和积极培育和发展社会化征信服务等。
(5)行业上的机会
目前较有代表性的大数据公司是“数据堂”和“聚合数据”,共同特点是拥有如BAT量级的大B用户。但相当部分的小B企业以及政府决策、公共服务、金融、电信等领域对数据存在需求,再加上数据供给端也出现了多元化的现状,所以大数据行业本身很难做到一家独大,类似于云见这样较小型的数据处理公司还是有机会在其中馋食大数据的红利。
创业的机会在哪里
池静若认为现在大数据产业链才开始发展,大众都把目光聚焦在大数据的两端:一是谁拥有这些数据,二是这些数据到底如何使用。但仅仅在两端是不能解决大数据问题的。
大数据产业的大量机会出现在中间环节,包括采集、聚合、机器学习加工后的数据通过智能管道合法流入到用户的手里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29