
有了爱情大数据,你再不会选错人
那爱情跟大数据是什么关系?我今天要讲的是从另外一个视角来看爱情。我的观念是爱情如同其他的一些感情上的行为一样,可以被数字化、数据化、数学化。
爱情和大数据走到一起了,意味着我们能以更多的智能,通过数学的方法,用现在所能得到的数据,以及大量使用的数字媒体来真正得到对爱情的洞察。
这里面的关键词是选择、匹配、预测。
就像我们很多行为可以在线上进行,约会也可以,这就叫在线约会。在线,意味着约会这个体验不再是不被记录的行为,而是被数字化了。
只要上了网,你每个点击、每个浏览、每一次打开网站,你就被记录了,数字化很自然地成为事实。
在数字化的过程中产生了数据,数据是有目的的数字组合,使得我们知道发生了什么事、有什么统计上的行为或者规律可以遵循。
美国差不多有四千多万人在线约会、找朋友、找情人、找今后长期的伴侣。
每一次他们做在线约会浏览时,大约耗时22分钟,一个星期内耗时12个小时,这是平均数。美国每十个人当中有一个人,曾经使用过类似的网站或者移动APP做在线约会规划。
66%的人通过在线软件的应用以后,他们又往前走了一步——确实去约会了,这个约会是真正现实中的行为,不是一个数字行为。
其中又有23%是真正地通过这些应用,找到了自己的配偶或者是长期的伴侣。
但另一方面,它也出现了一些以前没有的问题——信息的可靠性。56%的用户感觉到在网上的个人介绍往往是被夸大的,很大程度上误导了事实,造成了很大的麻烦。
81%的用户说自己曾经在某一项的描述当中撒了谎,其中包括谎报自己的体重,女性尤其爱往低评估;48%谎报了身高,男性在这方面尤其突出;19%谎报年纪,可能男性女性大约相同。
这些问题引起我的深思,这样一个平台上,好像数字、数据都很方便了,但是不是真正为我们服务了呢?如果没有这么多假的信息,利用拥有几千万的网络用户的软件,我们的恋爱、约会是不是能够效率更高一点?
有一个女记者Amy Webb,她也是一个未来学家,她喜欢想象未来是怎么回事。她做了一个尝试,在一个专门给犹太族裔的人群找配偶的网站上试验在线约会。
她在上面反复试验了很多次,但发布常规的信息比如说很懂日文、自己做了几年的记者等,却在找对象方面遇到很多挫折。
Amy就想,既然网站上有这么多数据,我为什么不能做一个数据分析呢?所以她做了两件事。
第一,她重点考虑了她所关心的男性对象的属性。每一次网站说,你可以跟这些人去约会,她就看一下这些人的属性是不是符合她的要求。
符合的她加一分,不符合的减一分。通过这种比较初级的方式,筛掉了很多本来网站推荐她去见一面的人。
第二,她意识到能找到心目中理想的人,并不是意味着那个理想的人也会看中她,这里面有很多竞争——她看中的这个男性,也可能会被很多的女生看中,她们会怎么接近他?
所以她用自己的模型,建立了一个分数,通过这个分数产生了十个假设的男性。
这些男性会留意到什么样的女性,会怎样和她联系约会。通过这些假设,她开始知道在介绍自己的时候,应当注重哪些方面,用什么样的语言能够成功引起注意。
这十个男性可能实际上不存在,但她至少用计分的方法算出,如果能找到类似男性的话,对她相当合适。
果然按照上述方法尝试几次后,她找到了自己最爱的一个男人,然后马上就组成了家庭,有了孩子。
这说明了什么问题?
从恋爱没有经过数字媒体,到有了数字媒体产生了数据,再到通过Amy的尝试,大家可以看到:数据可以帮助你把感情的事情理性化,从数字里看到一些自己可努力的方向,大量减少自己要搜寻的工作,使得爱情在有限时间、有限资源的情况下得到最好实现。
说到资源、选择、匹配,它能让一般的爱情有更多更广泛的内涵。
第一、 爱情可以被数字化、数据化,今天我们还可以把它数学化。
第二、 爱情大数据的作用已经被意识到了,大家都在开展这方面的应用。
应用到什么程度了呢?因为今天有很好的传感器、很多的摄影机、造像、信息处理、图象处理技术,一个男性说,我要找有范冰冰脸的女性,那他就可以发现很多有类似容貌的女性,而不是像以前那样,只能用模糊的数据描述这是女的、现在多大年纪。
第三、 爱情本身是一个选择匹配和预测的人类行为。
这种行为不止于谈情说爱,还能用在比如招聘、求学等选择领域,公司在找你,你也在找公司;你要选一个适合自己的最好大学,大学也在选你……
双向选择的过程几乎到处都有,我们对爱情大数据的研究,也不会仅限于对爱情的研究,对所有这些双向现象都要研究。
我的创业公司正在把基本的数字、数据和数学能力糅合,形成有力的产品,帮助大家对爱情产生更多深刻的认识,也是从数据能力上解答一个几千年、几万年的人类婚恋难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07