
大数据产业园模式解读
事实上,在2013年大数据产业的概念就在业界引起了广泛的讨论,当年被称为大数据元年。近年来,随着大数据产业园的纷纷上马,各地也呈现出不同的发展模式。
贵阳:“一把手工程”群策群力模式
有业内人士指出,贵阳发展大数据产业的优势在于制度创新。“这是一把手工程。贵州省领导十分重视,愿意突破原来的限制。”该人士表示。
2014年6月,贵州省政府成立贵州省大数据产业发展领导小组,省委书记、省长陈敏尔亲自担任组长。
不仅如此,贵州省还有更为激进的规定:除有特殊需求外,所有省级政务部门将不再自行购买服务器、交换机、存储等硬件设备,不再自建机房,政府数据统一存到云上。
除了“一把手工程”,最引人关注的就是各信息技术以及互联网企业在贵阳的布局。
早在2012年,中国电信、移动、联通三大通信运营商投资150亿元在贵安新区建设数据中心基地。另外,阿里巴巴集团在去年就与贵州省政府签署合作协议共同开发“云上贵州”,利用阿里飞天云技术给贵州省政务部门提供数据开发利用和资源整合平台,现在贵州7个厅局41个系统已在该云平台上运行。而腾讯在今年5月也同贵州省达成了关于“互联网+”的全面深层合作协议,准备利用微信巨大的用户数量和移动在线功能,为贵州省定制一套“智慧城市”解决方案,使贵阳市未来的医疗、交通、人社等政府服务都通过微信完成。
但是,光引进企业不一定就有大数据产业,高级人才缺乏成为贵阳大数据产业发展的瓶颈。业内人士指出,“IT研发人才东西部差距很大,设计类、新媒体类的人才贵州也很缺,有些企业甚至把人送出去培养后再回来。”
西安:以产业联盟搭建合作平台模式
2014年5月23日,“陕西省大数据产业联盟”成立。该联盟以沣西新城为平台,以西咸新区信息产业园为载体,致力于打造陕西省大数据与云计算技术产业链、创新链和服务链,探索建立长效稳定的产学研合作机制。
随后,沣西新城管理委员会发布《西咸新区信息产业园投资优惠政策》,标志着沣西新城信息产业“政策洼地”进一步形成。据了解,优惠政策具有针对性强、阶梯扶持、鼓励创新的特点,将扶持对象精准定位为云计算、大数据、电子商务等信息类企业,一定规模企业统一执行陕西省大工业电价。同时,制定阶梯式的优惠措施,使大中小型企业均可享受扶持。目前,西咸新区信息产业园已经吸引微软公司、中国联通、中国移动、未来国际公司等一大批发展大数据产业的企业入驻。
除了旅游、商贸、物流等传统优势领域之外,西安还正在抢抓电子信息、“互联网+”、“一带一路”等重要机遇,发挥高校、科研院所集中的优势,通过企业等平台发挥创新驱动效应,研发、生产出了一系列具有较强竞争力的产品,极大地增强了经济活力,加快了陕西企业“走出去”的步伐,这在高新区、经开区、国际港务区等区域体现得尤为明显,引领着西安市乃至陕西经济的增长。
重庆:上中下游全产业链模式
早在2010年4月,重庆就启动了“云端计划”,提出要打造离岸和在岸数据处理中心,在2020年形成100万台服务器的规模。3年后,又制定了《大数据行动计划》,提出要加快大数据产业布局,到2017年,大数据产业成为重庆市经济发展的重要增长极。
2015年年初,阿里大数据云计算有限公司与重庆移动互联网产业园正式达成战略合作协议。按照协议,双方将共同打造大渡口区中小型企业创业云服务生态链以及政务云市场,为园区内企业提供从技术支持到应用服务的云计算整体解决方案,推动该区大数据产业健康快速发展。
同时进军重庆大数据产业的还有惠普、九次方大数据、华硕云端和东华软件等公司。加上此前的法国源讯、日本NEC和中兴等,重庆大数据产业引进的国内外行业巨头数量已达两位数。
不仅如此,在渝北区、大渡口区、江津区和南岸区等区规划的几大大数据产业园区,建设与招商进展也相当乐观。
仅凭先天优势,不可能绘成宏伟的蓝图。据了解,大数据产业链的上游是电信运营商的网络基础设施,中游是数据中心及云计算服务,下游是大数据应用。其中在上游,重庆明确提出要打造全国信息交换枢纽和全球重要的“国际信息港”;在中游,规划建设两江国际云计算产业园,使之成为数据处理中心及云计算服务基地;在下游,则将在民生服务、城市管理、行业应用及外包服务等重点领域开展大数据示范应用,以示范应用引领产业发展。
在此基础上,重庆还规划了一批大数据重点产业基地。主要包括渝北区的重庆仙桃数据谷、大渡口区的重庆移动互联网产业园、永川区的永川软件园以及南岸区的物联网产业园等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14