京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业园模式解读
事实上,在2013年大数据产业的概念就在业界引起了广泛的讨论,当年被称为大数据元年。近年来,随着大数据产业园的纷纷上马,各地也呈现出不同的发展模式。
贵阳:“一把手工程”群策群力模式
有业内人士指出,贵阳发展大数据产业的优势在于制度创新。“这是一把手工程。贵州省领导十分重视,愿意突破原来的限制。”该人士表示。
2014年6月,贵州省政府成立贵州省大数据产业发展领导小组,省委书记、省长陈敏尔亲自担任组长。
不仅如此,贵州省还有更为激进的规定:除有特殊需求外,所有省级政务部门将不再自行购买服务器、交换机、存储等硬件设备,不再自建机房,政府数据统一存到云上。
除了“一把手工程”,最引人关注的就是各信息技术以及互联网企业在贵阳的布局。
早在2012年,中国电信、移动、联通三大通信运营商投资150亿元在贵安新区建设数据中心基地。另外,阿里巴巴集团在去年就与贵州省政府签署合作协议共同开发“云上贵州”,利用阿里飞天云技术给贵州省政务部门提供数据开发利用和资源整合平台,现在贵州7个厅局41个系统已在该云平台上运行。而腾讯在今年5月也同贵州省达成了关于“互联网+”的全面深层合作协议,准备利用微信巨大的用户数量和移动在线功能,为贵州省定制一套“智慧城市”解决方案,使贵阳市未来的医疗、交通、人社等政府服务都通过微信完成。
但是,光引进企业不一定就有大数据产业,高级人才缺乏成为贵阳大数据产业发展的瓶颈。业内人士指出,“IT研发人才东西部差距很大,设计类、新媒体类的人才贵州也很缺,有些企业甚至把人送出去培养后再回来。”
西安:以产业联盟搭建合作平台模式
2014年5月23日,“陕西省大数据产业联盟”成立。该联盟以沣西新城为平台,以西咸新区信息产业园为载体,致力于打造陕西省大数据与云计算技术产业链、创新链和服务链,探索建立长效稳定的产学研合作机制。
随后,沣西新城管理委员会发布《西咸新区信息产业园投资优惠政策》,标志着沣西新城信息产业“政策洼地”进一步形成。据了解,优惠政策具有针对性强、阶梯扶持、鼓励创新的特点,将扶持对象精准定位为云计算、大数据、电子商务等信息类企业,一定规模企业统一执行陕西省大工业电价。同时,制定阶梯式的优惠措施,使大中小型企业均可享受扶持。目前,西咸新区信息产业园已经吸引微软公司、中国联通、中国移动、未来国际公司等一大批发展大数据产业的企业入驻。
除了旅游、商贸、物流等传统优势领域之外,西安还正在抢抓电子信息、“互联网+”、“一带一路”等重要机遇,发挥高校、科研院所集中的优势,通过企业等平台发挥创新驱动效应,研发、生产出了一系列具有较强竞争力的产品,极大地增强了经济活力,加快了陕西企业“走出去”的步伐,这在高新区、经开区、国际港务区等区域体现得尤为明显,引领着西安市乃至陕西经济的增长。
重庆:上中下游全产业链模式
早在2010年4月,重庆就启动了“云端计划”,提出要打造离岸和在岸数据处理中心,在2020年形成100万台服务器的规模。3年后,又制定了《大数据行动计划》,提出要加快大数据产业布局,到2017年,大数据产业成为重庆市经济发展的重要增长极。
2015年年初,阿里大数据云计算有限公司与重庆移动互联网产业园正式达成战略合作协议。按照协议,双方将共同打造大渡口区中小型企业创业云服务生态链以及政务云市场,为园区内企业提供从技术支持到应用服务的云计算整体解决方案,推动该区大数据产业健康快速发展。
同时进军重庆大数据产业的还有惠普、九次方大数据、华硕云端和东华软件等公司。加上此前的法国源讯、日本NEC和中兴等,重庆大数据产业引进的国内外行业巨头数量已达两位数。
不仅如此,在渝北区、大渡口区、江津区和南岸区等区规划的几大大数据产业园区,建设与招商进展也相当乐观。
仅凭先天优势,不可能绘成宏伟的蓝图。据了解,大数据产业链的上游是电信运营商的网络基础设施,中游是数据中心及云计算服务,下游是大数据应用。其中在上游,重庆明确提出要打造全国信息交换枢纽和全球重要的“国际信息港”;在中游,规划建设两江国际云计算产业园,使之成为数据处理中心及云计算服务基地;在下游,则将在民生服务、城市管理、行业应用及外包服务等重点领域开展大数据示范应用,以示范应用引领产业发展。
在此基础上,重庆还规划了一批大数据重点产业基地。主要包括渝北区的重庆仙桃数据谷、大渡口区的重庆移动互联网产业园、永川区的永川软件园以及南岸区的物联网产业园等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27