
一个数据科学家对商学院的建议
通过协助企业将数据驱动的方法运用到企业运营中,开发从数据中获得市场感知的产品,以及在高管层中推广智能数据文化,我有幸能与很多有才华的商学专业人共事,经历他们如何在颠覆行业的同时又使得组织价值得以保留。
就如你预料的那样,很多这些专业人员来自商学院,在那里他们已经做好了要与公司里各领域的专家共事的准备。
每一个商学毕业生都希望掌握一种能力,即能够运用“中间语”交流商业要务及公司管理层概念。他们应该是一个“多面手”,能够将综合高深抽象的方法运用到现实组织运营中。
为了培养出这样的学生,商学院必须找到一种方法来教授行业专家们正在使用的高级的方法。毕业生们也必须理解一个资深专家的专长是怎样为公司的整体战略创造价值的。只有这样,商学院毕业生和行业专家才能实现有价值的沟通以及提出新的颠覆性观点。
直到最近,这些主张才被引入到商学院。因为传统部门与商业运营已经有相当明显的重叠,比如:一个公司的市场部有专家与客户沟通公司产品或服务的价值;财务部有专家管理财务运营;公共关系部门有专家管理公司的公共形象;IT部门有专家确保系统,数据库和软件按照预期来运行。
多年来,通过建立专才的关注点及通才的高层次概念的“中间语”,商学院已培养出能够帮助公司雇主找到满足市场需求的毕业生。
但是有些事正在发生变化,市场已经不是过去的市场。每一个行业无一幸免地都被一种新的“通货”所触动。它就是数据,它以一种颠覆性方式关联着所有人。
正因如此,整个商学院有着某种隐忧。为了保住他们的价值,商学院毕业生想要在当下市场下竞争必须学会与行业专才沟通。数据专家成为了商界的新兴多面手。数据专家使用专业数据处理方法将原始数据转化为公司实际运营价值。与其它在公司的行业专才一样,商学院毕业生也必须与这些数据专家之间建立起有效的“中间语”。
数据专家在商业中扮演的非传统角色体现在他们在解决问题的方法上,这种使得非传统角色在商业运营中的职务重叠变得不那么明显。但是,在一个正在快速变为“数据即一切的世界中”,这其实是一个严重的问题。对那些需要与公司专才有效沟通的商学毕业生来说,现在的关键在于要用高层次的“语言”来与数据专家“交流”。
导致商学院隐忧主要有以下两个原因:
当前现实是,越来越多的业务需要能建立的各种模型的计算机软件科学家,以及可以为对已有数据进行分析及建模数据专家。
很多商学毕业生还不能理解数据专家在商务中的作用,从而也不没有能整合中坚专家与公司领导层决策图景的“中间语”。
这确实是一个问题...
商学院必须了解数据科学和商业运用中哪里存在重叠,这只能通过了解数据专家在一个组织中解决问题时的途径来实现。更重要的是理解数据科学解决问题的方法与其它方法有怎样的不同。
如果商学院毕业生不理解数据科学和其它形式分析在概上的不同,他们将不能与现代企业中某一关键领域专家开展有意义的、有创造价值的对话。
“如果商学院毕业生不理解数据科学与其它分析形式在概念上的不同,就不能与现代企业中中坚领域专家开展有意义的、有创造价值的对话。”
给商学院的建议
有这么一些高层次的话题,却是了解做数据研究意义的关键。这些问题从功能概念上强调了数据学在解决问题途径上的不同。我建议每一门商学院课程都邀请一位有经验的数据学家参与讨论有关现实中究竟什么才是数据学的问题。
只有通过这样的讨论,“中间语”才能被建立起来,才能确保商学毕业生适应当今那些由数据驱动的商务公司的要求。
什么类型的软件是没有数据科学就一定不能建立的?
数据科学是怎样使员工做出更多有价值且创造性的任务?
软件开发人员自动化和数据科学自动化之间有什么不同?
数据科学是怎样增强市场影响、销售参与、操作和库存管理,但传统分析方法就不可能实现的效果的?
数据科学是怎样让得一个需要20个步骤的任务减少到只需要5步就能完成的?
使用数据时,是什么使得人工决策的显得局限?
为什么商业智能和数据科学在功能上少有重叠?
数据科学和大数据分析之间有什么不同,哪里是它们重叠的部分?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14