京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一个数据科学家对商学院的建议
通过协助企业将数据驱动的方法运用到企业运营中,开发从数据中获得市场感知的产品,以及在高管层中推广智能数据文化,我有幸能与很多有才华的商学专业人共事,经历他们如何在颠覆行业的同时又使得组织价值得以保留。
就如你预料的那样,很多这些专业人员来自商学院,在那里他们已经做好了要与公司里各领域的专家共事的准备。
每一个商学毕业生都希望掌握一种能力,即能够运用“中间语”交流商业要务及公司管理层概念。他们应该是一个“多面手”,能够将综合高深抽象的方法运用到现实组织运营中。
为了培养出这样的学生,商学院必须找到一种方法来教授行业专家们正在使用的高级的方法。毕业生们也必须理解一个资深专家的专长是怎样为公司的整体战略创造价值的。只有这样,商学院毕业生和行业专家才能实现有价值的沟通以及提出新的颠覆性观点。
直到最近,这些主张才被引入到商学院。因为传统部门与商业运营已经有相当明显的重叠,比如:一个公司的市场部有专家与客户沟通公司产品或服务的价值;财务部有专家管理财务运营;公共关系部门有专家管理公司的公共形象;IT部门有专家确保系统,数据库和软件按照预期来运行。
多年来,通过建立专才的关注点及通才的高层次概念的“中间语”,商学院已培养出能够帮助公司雇主找到满足市场需求的毕业生。
但是有些事正在发生变化,市场已经不是过去的市场。每一个行业无一幸免地都被一种新的“通货”所触动。它就是数据,它以一种颠覆性方式关联着所有人。
正因如此,整个商学院有着某种隐忧。为了保住他们的价值,商学院毕业生想要在当下市场下竞争必须学会与行业专才沟通。数据专家成为了商界的新兴多面手。数据专家使用专业数据处理方法将原始数据转化为公司实际运营价值。与其它在公司的行业专才一样,商学院毕业生也必须与这些数据专家之间建立起有效的“中间语”。
数据专家在商业中扮演的非传统角色体现在他们在解决问题的方法上,这种使得非传统角色在商业运营中的职务重叠变得不那么明显。但是,在一个正在快速变为“数据即一切的世界中”,这其实是一个严重的问题。对那些需要与公司专才有效沟通的商学毕业生来说,现在的关键在于要用高层次的“语言”来与数据专家“交流”。
导致商学院隐忧主要有以下两个原因:
当前现实是,越来越多的业务需要能建立的各种模型的计算机软件科学家,以及可以为对已有数据进行分析及建模数据专家。
很多商学毕业生还不能理解数据专家在商务中的作用,从而也不没有能整合中坚专家与公司领导层决策图景的“中间语”。
这确实是一个问题...
商学院必须了解数据科学和商业运用中哪里存在重叠,这只能通过了解数据专家在一个组织中解决问题时的途径来实现。更重要的是理解数据科学解决问题的方法与其它方法有怎样的不同。
如果商学院毕业生不理解数据科学和其它形式分析在概上的不同,他们将不能与现代企业中某一关键领域专家开展有意义的、有创造价值的对话。
“如果商学院毕业生不理解数据科学与其它分析形式在概念上的不同,就不能与现代企业中中坚领域专家开展有意义的、有创造价值的对话。”
给商学院的建议
有这么一些高层次的话题,却是了解做数据研究意义的关键。这些问题从功能概念上强调了数据学在解决问题途径上的不同。我建议每一门商学院课程都邀请一位有经验的数据学家参与讨论有关现实中究竟什么才是数据学的问题。
只有通过这样的讨论,“中间语”才能被建立起来,才能确保商学毕业生适应当今那些由数据驱动的商务公司的要求。
什么类型的软件是没有数据科学就一定不能建立的?
数据科学是怎样使员工做出更多有价值且创造性的任务?
软件开发人员自动化和数据科学自动化之间有什么不同?
数据科学是怎样增强市场影响、销售参与、操作和库存管理,但传统分析方法就不可能实现的效果的?
数据科学是怎样让得一个需要20个步骤的任务减少到只需要5步就能完成的?
使用数据时,是什么使得人工决策的显得局限?
为什么商业智能和数据科学在功能上少有重叠?
数据科学和大数据分析之间有什么不同,哪里是它们重叠的部分?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13