京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据解读下的“智能家居”市场
随着物联网、云计算、大数据等技术的不断成熟和广泛应用,推动包括智能家居在内的新兴产业的发展。互联网平台与传统企业的关注为智能家居技术发展全面助力,了解用户需求、把握产品方向成为越来越多业界企业关注的重点。以下,一些调研的得来的大数据将为您解读2016年智能家居产业现状。
1 终端用户对智能家居的了解程度
1.1 智能家居集成应用功能需求分析
智能家居集成应用功能需求分析
问卷调查显示,在现阶段用户接受度较高的智能家居集成应用功能中,影音集成、家庭安防、智能灯光以及以背景音乐、电动窗帘等为代表的单系统第三方设备占比相当,成为当下智能家居集成项目应用的主要功能延伸。家庭安防因其突出的刚性需求要素,成为不少终端用户在智能家居功能选择时的首选要素。影音集成和智能灯光系统则凭借各自在细分功能化领域中的特色应用备受关注。
1.2 用户最感兴趣的智能家居功能
用户最感兴趣的智能家居功能
不同于家庭安防大都依赖于对第三方产品的集成,影音集成和智能灯光是目前智能家居集成商市场设备厂商的重点发力方向,大部分智能家居集成设备厂商的产品关注点主要也集中于此。在此基础上,对于用户最感兴趣的智能家居功能,也多是围绕家庭安防、影音中控和智能灯光展开的相关应用场景。
2 用户系统/单品价格接受度
2.1 单品型智能家居产品价格接受度
单品型智能家居产品价格接受度
近年来,以智能插座、红外遥控学习、智能门磁、空气检测等为代表“智能单品”或被成为“轻智能”产品的出现,以及其在电商渠道和众筹平台的销售,大大降低了普通用户使用智能家居产品的成本门槛。与此同时,也进一步提升了智能家居应用在用户层面的消费认知。针对此类产品用户的接受程度也多在数百元范围内浮动。
2.2 智能家居集成项目价格接受度
智能家居集成项目价格接受度
通过集成商问卷,重点了解目前多数用户能够接受的智能家居系统价格区间分布,经过了解分析5,000元以下区间的,多为选择单一系统或通过单品型产品后装改造的用户。普通平层用户可接受价格区间多为10,000元-30,000元区间和30,000元-50,000元区间,这也和当下不少智能家居厂家针对于大平层用户的智能化方案定位相吻合。不过针对此类方案,在一些非精装项目中,同样也需要考虑水电改造等附加成本要素,以及智能化预算在整体装修预算中所占的比例。此外,10,0000以上区间多为别墅或复式住宅用户,尽管此类项目总量有限,但单一项目的智能化造价却十分可观,且代表了集成系统在功能延伸与个性化体现方面的较高水准,这也是目前集成商群体竞争的主战场。
2.3 装修预算比分析
装修预算比分析
从用户装修预算比角度分析,对于智能化的装修预算在15%范围内的用户,占据了受访者的七成。结合整体装修预算,也大致可以估算,并呈现出智能家居系统在不同类型住宅中的功能形态与系统形式分布。对于整体预算金额较高的大面积住宅用户,智能家居系统在无形中产生部分刚性功能需求的同时,也同样有着一定的预算空间作为支撑。
2.4 单位面积内的智能系统造价分析
单位面积内的智能系统造价分析
通过分析可见,在单位面积中,智能化系统所占比例并不显眼。事实上,根据不同的市场类别与用户需求,讲求个性化应用的家庭集成市场,由于所涉第三方设备因素,单位面积中智能系统的造价比往往存在走高的可能性。而在酒店项目市场与精装房市场,由于规模化应用、批量化施工以及甲方成本控制,在很大程度上拉低单位面积造价比。
3 用户选择侧重点分析
3.1 用户使用习惯
用户使用习惯
随着控制技术和交互方式的不断发展,智能家居控制方式也呈现出多元化发展的趋势。在传统产品智能化升级的过程中,APP成为走向智能化的必备要素,也开始被众多终端用户所认知。此外,不断成熟的语音控制与传感器技术也为广大用户提供了无需手动操作的新兴控制方式选择。与此同时,开关面板作为传统的控制方式选择,因其操作的直观性和根深蒂固的用户习惯依然成为最受青睐的控制操作方式。特别是针对于老年和儿童用户时,在便捷操控方面的特殊优势。在数据因素以外,遥控器作为早期智能化的体现,在一些特殊的应用场景中也有着较之APP等新操控手段更为便捷和直接的操作体验。
总结分析
市场上各种宣传影响,加之智能家居多系统与丰富功能延伸的属性特质,让用户对于智能家居的认知并不清晰。现阶段,市场业态逐步形成,前装集成市场与后装消费市场存在产品定位差异,用户对于品牌、功能和需求的认知正处于形成过程中。
针对不同场景需求的用户,对于操作方式的选择自然存在较大差异。开关面板作为常规直接控制手段,其相对于其他新兴控制技术方式,在日常使用过程中处于高频操作的状态。特别是开关面板产品对于传统用户习惯的延续具有不可或缺性,在此轮智能家居发展浪潮中具有巨大的发展潜力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27