京公网安备 11010802034615号
经营许可证编号:京B2-20210330
5个分析维度,轻松搞定App数据分析
基础指标
1、用户:总用户数、新用户数、留存用户、转化率、地域分析;
2、活跃:日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
3、营收:付费人数、付费率、付费点分布;
4、应用:启动次数、使用频率、使用时长、使用间隔、版本分布、终端类型、错误分析;
5、功能:功能活跃、页面访问路径、核心动作的转化率;
●分析维度
你赚钱的方式决定了你应该关注的指标。从长远来讲,企业风险最高的部分往往是与其如何赚钱直接相关的。基于以上的基础数据指标,结合数据分析的两点事实,可以选取所需的指标,完成APP数据分析:
1.用户分析
分析用户属性为产品改进及推广提供充分、可靠的数据制定精准的策略;
1.1用户规模
基础指标:总用户数、新增用户、流失用户、回流用户;
统计维度:按年、月、周、曰;
指标比例:统一使用”率“表示;
指标说明:苹果端很难取值,可以间接地转化;以激活APP量代替下载量;安卓比较好处理;日月周维度;新增用户/总用户数,说明产品健康度;比值的大小都有影响说明问题;
1.2活跃用户_用户质量
基础指标:日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
统计维度:按日、周、月,按渠道,按分群;
指标比例:统一使用”率“表示;
指标说明:日、周、月,统计维度依据产品类型/属性而选取;提高这些指标的方式:采取运营活动,推送,签到,任务,积分;以功能和内容驱动,用户APP的使用频率;
1.3用户构成
基础指标:活跃用户、启动次数;
统计维度:按年、月、周、曰;
a. 本周回流用户:上周未启动过应用,本周启动应用的活跃用户;
b. 连续活跃n周用户:连续n周,每周至少启动过一次应用的活跃用户(第n+1未启动)
c. 忠诚用户:连续活跃n周及以上的用户;
d. 连续活跃用户:连续活跃2周以上的的用户;
e. 近期流失用户:连续n周没有启动过应用的用户(第n+1周启动过);
f. 周活跃用户:当周启动过应用的用户(去重);
指标比例:统一使用”率“表示;绝对值——展示的是个用户成分的数量,百分比展示的是活跃用户 成分占周或曰用户的比例;对周活跃用户数据进行的成分分解,并通过历史数据预测未来数据变化趋势的模型。该模 型帮助您对应用后续的用户活跃和留存等进行科学预测,并制定有效的规划和目标;
2.应用分析
2.1启动次数
基础指标:总用户数、新增用户、流失用户、回流用户;
统计维度:按月、周或曰,按渠道,按分群;
指标比例:某日/周/月的启动次数占所选时段总启动次数的比例;
指标说明:打开应用视为启动,完全退出或退至后台即视为启动结束;
2.2版本分布
基础指标:启动次数、新增用户、活跃用户、升级用户;
统计维度:按时间、版本;
指标比例:统一使用”率“表示;不同版本的累计用户(占累计用户全体的比例);
指标说明:展示累计用户排名前10的各个版本变化趋势,可以帮助了解每个版本的新增用户,最新版本的升级情况,目前的哪些版本状况;
2.3使用状况
基础指标:使用时长、使用频次、使用间隔;
统计维度:日、周、月;版本、渠道、时间段;
指标比例:某日/周/月的启动次数占所选时段总启动次数的比例;
指标说明:统计周期内,一次启动的使用时长;一天内启动应用的次数;
用统一用户相邻两次启动间隔的时间长度。
2.4终端类型、错误分析(不做详细介绍)
3.功能分析
a. 功能活跃指标:某个功能的活跃用户,使用量情况;功能验证;对产品功能的数据分析,确保功能的取舍的合理性,
b. 页面访问路径:用户从打开到离开应用整个过程中每一步骤的页面访问、跳转情况。页面访问路径是全量统计。通过路径分析得出用户类型的多样、用户使用产品目的的多样性,还原用户目的;通过路径分析,做用户细分;再通过用户细分,返回到产品的迭代。
c. 漏斗模型:整个漏斗所关心的最终转化率的目标是序列中最后一个事件。用户转化率的分析,核心考察漏斗每一层的流失原因的分析。通过设置自定义事件以及漏斗来关注应用内每一步的转化率,以及转化率对收入水平的影响。通过分析事件和漏斗数据,可以针对性的优化转化率低的步骤,切实提高整体转化水平。
4.行业分析
指标说明:行业数据可以帮助了解行业内应用的整体水平,可以查看应用的全体应用或同类应用中各个 指标的数据、排名及趋势,有助于衡量应用的质量和表现;
统计维度:用户规模、更新频次、应用排名;
指标比例:全体排名和同规模排名;
了解行业数据,可以知道自己的APP在整个行业的水平,可以从新增用户、活跃用户、启动次数、使用时长等多个维度去对比自己产品与行业平均水平的差异以及自己产品的对应的指标在整个行业的排名,从而知道自己产品的不足之处。
5.渠道分析
指标说明:渠道质量的评估,不同渠道获得用户的行为特征监控、判断问题;
统计维度:时间段、不同渠道对比;基础对比(新增用户、新增账号、活跃用户、活跃账号、启动次数、单次使用时长、次日留存率);
可以从多个维度的数据来对比不同渠道的效果,比如从新增用户、活跃用户、次日留存率、单次使用时长等角度对比不同来源的用户,这样就可以根据数据找到最适合自身的渠道,从而获得最好的推广效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27