
5个分析维度,轻松搞定App数据分析
基础指标
1、用户:总用户数、新用户数、留存用户、转化率、地域分析;
2、活跃:日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
3、营收:付费人数、付费率、付费点分布;
4、应用:启动次数、使用频率、使用时长、使用间隔、版本分布、终端类型、错误分析;
5、功能:功能活跃、页面访问路径、核心动作的转化率;
●分析维度
你赚钱的方式决定了你应该关注的指标。从长远来讲,企业风险最高的部分往往是与其如何赚钱直接相关的。基于以上的基础数据指标,结合数据分析的两点事实,可以选取所需的指标,完成APP数据分析:
1.用户分析
分析用户属性为产品改进及推广提供充分、可靠的数据制定精准的策略;
1.1用户规模
基础指标:总用户数、新增用户、流失用户、回流用户;
统计维度:按年、月、周、曰;
指标比例:统一使用”率“表示;
指标说明:苹果端很难取值,可以间接地转化;以激活APP量代替下载量;安卓比较好处理;日月周维度;新增用户/总用户数,说明产品健康度;比值的大小都有影响说明问题;
1.2活跃用户_用户质量
基础指标:日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
统计维度:按日、周、月,按渠道,按分群;
指标比例:统一使用”率“表示;
指标说明:日、周、月,统计维度依据产品类型/属性而选取;提高这些指标的方式:采取运营活动,推送,签到,任务,积分;以功能和内容驱动,用户APP的使用频率;
1.3用户构成
基础指标:活跃用户、启动次数;
统计维度:按年、月、周、曰;
a. 本周回流用户:上周未启动过应用,本周启动应用的活跃用户;
b. 连续活跃n周用户:连续n周,每周至少启动过一次应用的活跃用户(第n+1未启动)
c. 忠诚用户:连续活跃n周及以上的用户;
d. 连续活跃用户:连续活跃2周以上的的用户;
e. 近期流失用户:连续n周没有启动过应用的用户(第n+1周启动过);
f. 周活跃用户:当周启动过应用的用户(去重);
指标比例:统一使用”率“表示;绝对值——展示的是个用户成分的数量,百分比展示的是活跃用户 成分占周或曰用户的比例;对周活跃用户数据进行的成分分解,并通过历史数据预测未来数据变化趋势的模型。该模 型帮助您对应用后续的用户活跃和留存等进行科学预测,并制定有效的规划和目标;
2.应用分析
2.1启动次数
基础指标:总用户数、新增用户、流失用户、回流用户;
统计维度:按月、周或曰,按渠道,按分群;
指标比例:某日/周/月的启动次数占所选时段总启动次数的比例;
指标说明:打开应用视为启动,完全退出或退至后台即视为启动结束;
2.2版本分布
基础指标:启动次数、新增用户、活跃用户、升级用户;
统计维度:按时间、版本;
指标比例:统一使用”率“表示;不同版本的累计用户(占累计用户全体的比例);
指标说明:展示累计用户排名前10的各个版本变化趋势,可以帮助了解每个版本的新增用户,最新版本的升级情况,目前的哪些版本状况;
2.3使用状况
基础指标:使用时长、使用频次、使用间隔;
统计维度:日、周、月;版本、渠道、时间段;
指标比例:某日/周/月的启动次数占所选时段总启动次数的比例;
指标说明:统计周期内,一次启动的使用时长;一天内启动应用的次数;
用统一用户相邻两次启动间隔的时间长度。
2.4终端类型、错误分析(不做详细介绍)
3.功能分析
a. 功能活跃指标:某个功能的活跃用户,使用量情况;功能验证;对产品功能的数据分析,确保功能的取舍的合理性,
b. 页面访问路径:用户从打开到离开应用整个过程中每一步骤的页面访问、跳转情况。页面访问路径是全量统计。通过路径分析得出用户类型的多样、用户使用产品目的的多样性,还原用户目的;通过路径分析,做用户细分;再通过用户细分,返回到产品的迭代。
c. 漏斗模型:整个漏斗所关心的最终转化率的目标是序列中最后一个事件。用户转化率的分析,核心考察漏斗每一层的流失原因的分析。通过设置自定义事件以及漏斗来关注应用内每一步的转化率,以及转化率对收入水平的影响。通过分析事件和漏斗数据,可以针对性的优化转化率低的步骤,切实提高整体转化水平。
4.行业分析
指标说明:行业数据可以帮助了解行业内应用的整体水平,可以查看应用的全体应用或同类应用中各个 指标的数据、排名及趋势,有助于衡量应用的质量和表现;
统计维度:用户规模、更新频次、应用排名;
指标比例:全体排名和同规模排名;
了解行业数据,可以知道自己的APP在整个行业的水平,可以从新增用户、活跃用户、启动次数、使用时长等多个维度去对比自己产品与行业平均水平的差异以及自己产品的对应的指标在整个行业的排名,从而知道自己产品的不足之处。
5.渠道分析
指标说明:渠道质量的评估,不同渠道获得用户的行为特征监控、判断问题;
统计维度:时间段、不同渠道对比;基础对比(新增用户、新增账号、活跃用户、活跃账号、启动次数、单次使用时长、次日留存率);
可以从多个维度的数据来对比不同渠道的效果,比如从新增用户、活跃用户、次日留存率、单次使用时长等角度对比不同来源的用户,这样就可以根据数据找到最适合自身的渠道,从而获得最好的推广效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13