
5个分析维度,轻松搞定App数据分析
基础指标
1、用户:总用户数、新用户数、留存用户、转化率、地域分析;
2、活跃:日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
3、营收:付费人数、付费率、付费点分布;
4、应用:启动次数、使用频率、使用时长、使用间隔、版本分布、终端类型、错误分析;
5、功能:功能活跃、页面访问路径、核心动作的转化率;
●分析维度
你赚钱的方式决定了你应该关注的指标。从长远来讲,企业风险最高的部分往往是与其如何赚钱直接相关的。基于以上的基础数据指标,结合数据分析的两点事实,可以选取所需的指标,完成APP数据分析:
1.用户分析
分析用户属性为产品改进及推广提供充分、可靠的数据制定精准的策略;
1.1用户规模
基础指标:总用户数、新增用户、流失用户、回流用户;
统计维度:按年、月、周、曰;
指标比例:统一使用”率“表示;
指标说明:苹果端很难取值,可以间接地转化;以激活APP量代替下载量;安卓比较好处理;日月周维度;新增用户/总用户数,说明产品健康度;比值的大小都有影响说明问题;
1.2活跃用户_用户质量
基础指标:日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
统计维度:按日、周、月,按渠道,按分群;
指标比例:统一使用”率“表示;
指标说明:日、周、月,统计维度依据产品类型/属性而选取;提高这些指标的方式:采取运营活动,推送,签到,任务,积分;以功能和内容驱动,用户APP的使用频率;
1.3用户构成
基础指标:活跃用户、启动次数;
统计维度:按年、月、周、曰;
a. 本周回流用户:上周未启动过应用,本周启动应用的活跃用户;
b. 连续活跃n周用户:连续n周,每周至少启动过一次应用的活跃用户(第n+1未启动)
c. 忠诚用户:连续活跃n周及以上的用户;
d. 连续活跃用户:连续活跃2周以上的的用户;
e. 近期流失用户:连续n周没有启动过应用的用户(第n+1周启动过);
f. 周活跃用户:当周启动过应用的用户(去重);
指标比例:统一使用”率“表示;绝对值——展示的是个用户成分的数量,百分比展示的是活跃用户 成分占周或曰用户的比例;对周活跃用户数据进行的成分分解,并通过历史数据预测未来数据变化趋势的模型。该模 型帮助您对应用后续的用户活跃和留存等进行科学预测,并制定有效的规划和目标;
2.应用分析
2.1启动次数
基础指标:总用户数、新增用户、流失用户、回流用户;
统计维度:按月、周或曰,按渠道,按分群;
指标比例:某日/周/月的启动次数占所选时段总启动次数的比例;
指标说明:打开应用视为启动,完全退出或退至后台即视为启动结束;
2.2版本分布
基础指标:启动次数、新增用户、活跃用户、升级用户;
统计维度:按时间、版本;
指标比例:统一使用”率“表示;不同版本的累计用户(占累计用户全体的比例);
指标说明:展示累计用户排名前10的各个版本变化趋势,可以帮助了解每个版本的新增用户,最新版本的升级情况,目前的哪些版本状况;
2.3使用状况
基础指标:使用时长、使用频次、使用间隔;
统计维度:日、周、月;版本、渠道、时间段;
指标比例:某日/周/月的启动次数占所选时段总启动次数的比例;
指标说明:统计周期内,一次启动的使用时长;一天内启动应用的次数;
用统一用户相邻两次启动间隔的时间长度。
2.4终端类型、错误分析(不做详细介绍)
3.功能分析
a. 功能活跃指标:某个功能的活跃用户,使用量情况;功能验证;对产品功能的数据分析,确保功能的取舍的合理性,
b. 页面访问路径:用户从打开到离开应用整个过程中每一步骤的页面访问、跳转情况。页面访问路径是全量统计。通过路径分析得出用户类型的多样、用户使用产品目的的多样性,还原用户目的;通过路径分析,做用户细分;再通过用户细分,返回到产品的迭代。
c. 漏斗模型:整个漏斗所关心的最终转化率的目标是序列中最后一个事件。用户转化率的分析,核心考察漏斗每一层的流失原因的分析。通过设置自定义事件以及漏斗来关注应用内每一步的转化率,以及转化率对收入水平的影响。通过分析事件和漏斗数据,可以针对性的优化转化率低的步骤,切实提高整体转化水平。
4.行业分析
指标说明:行业数据可以帮助了解行业内应用的整体水平,可以查看应用的全体应用或同类应用中各个 指标的数据、排名及趋势,有助于衡量应用的质量和表现;
统计维度:用户规模、更新频次、应用排名;
指标比例:全体排名和同规模排名;
了解行业数据,可以知道自己的APP在整个行业的水平,可以从新增用户、活跃用户、启动次数、使用时长等多个维度去对比自己产品与行业平均水平的差异以及自己产品的对应的指标在整个行业的排名,从而知道自己产品的不足之处。
5.渠道分析
指标说明:渠道质量的评估,不同渠道获得用户的行为特征监控、判断问题;
统计维度:时间段、不同渠道对比;基础对比(新增用户、新增账号、活跃用户、活跃账号、启动次数、单次使用时长、次日留存率);
可以从多个维度的数据来对比不同渠道的效果,比如从新增用户、活跃用户、次日留存率、单次使用时长等角度对比不同来源的用户,这样就可以根据数据找到最适合自身的渠道,从而获得最好的推广效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27