
大数据时代带来喜忧参半,数据发展正面临转折点
近年来,大数据已经覆盖了许多领域,包括互联网领域。许多应用和平台热衷于搜集用户的信息。而在近日举行的SXSW(South by Southwest,西南偏南)大会上,专家们却表达了对于数据会歧视用户的担忧。
会上,独立隐私安全专家Ashkan Soldani提及了IBM的一款能够计算“恐怖主义得分”的软件。这款软件的目的是通过用户数据,计算从叙利亚来到欧洲的人们参与恐怖活动的概率。
大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。但是,在大数据发挥重要作用的同时,也产生了一系列问题,给人们造成了困扰。
一、许多软件因数据歧视用户,造成诸多问题
目前,许多企业都会通过软件或应用搜集用户信息。在大数据时代,这种做法是无可厚非甚至是必要的,但是,用户数据可能会使用户遭到歧视,甚至造成滥用。
比如,电脑投放求职广告时,就会产生歧视行为。去年,卡耐基梅隆大学的研究人员通过一款名叫AdFisher的工具,对其第三方网站上的广告定向投放过程进行了追踪。结果表明,当谷歌判定求职者为男性时,为其推送高新主管职位消息的概率远大于同等条件的女性求职者。
记者Julia Angwin说:“你可能并不知道你为什么没有得到那份工作,你或许永远不会知道,其实是因为数据歧视了你”。
对此,AdFisher的开发者表示:“我认为,我们的发现揭露了目前广告生态中开始浮现的诸多歧视和不透明现象。从社会的角度来看,它很值得担忧”。
不仅是在工作方面,就连社交软件都会因为数据歧视用户。美国约会应用Tinder的付费版Tinder Plus推出后,其定价的差异化引发了争议。在美国的用户,18岁到29岁只需9.99美元,但是超过30岁的用户则需支付19.99美元。而处在英国地区的用户,18岁至27岁只需支付3.99英镑,而超过28岁就必须支付14.99英镑。
由于这样的定价,关于Tinder歧视“大龄未婚青年”的言论一时蔓延开来。对此,Tinder副总裁的解释是,年轻用户是高频使用者,但缺乏金钱,定价较低是为了刺激其购买欲。而大龄用户对价格或许敏感度更低,所以愿意购买服务。因此,定价差异化是基于公司测算,并非年龄歧视。
不管这些应用是出于怎样的目的,都或多或少地带有歧视色彩,并且大数据有泄露用户隐私之嫌。一份研究大数据影响的白宫报告中写道:“我们长期坚持的公民权利保护政策对居民信息如何在住房、信用卡、雇佣、健康、教育和交易市场等方面使用有严格的限制,而数据分析技术有可能会击溃这一防线”。
研究者指出,对于企业追踪用户的过程以及投放广告的算法有一定的了解,对人权组织及监管机构来说,是相当重要的。当然,企业也应该采取一些相关的措施,消除数据对用户带来的歧视。
大数据是在互联网时代不可避免的发展趋势,但同时,它产生的问题也让人们有些恐慌。
二、大数据发展正面临转折点,需努力趋利避害
大数据的意义就在于,从庞杂的数据背后挖掘并分析用户的行为习惯与喜好,从而找出更符合用户“口味”的产品和服务,并结合用户需求有针对性地调整和优化自身。
这种作用对于当今企业来说,是极其重要的,其商业价值大致体现在四个方面。
大数据可以实现客户群体细分,并为每个群体量身定制特别的服务;大数据可以对现实环境进行模拟,发掘出新的需求并使投资回报率有所提升;大数据可以加强部门之间的联系,提高生产链条与管理链条的效率;大数据可以使服务成本降低,找出隐藏线索,对产品和服务进行创新。
对于社会来说,大数据的发展也是有诸多好处的。大数据定理表明,在试验不变的条件下,重复试验过程多次。在大量重复中,会呈现出几乎必然的统计特性。
随着计算机处理能力的增强,获得的数据量越大,挖掘出的价值就越多。如果银行能够及时发现风险,社会经济将越发强大;如果医院能够及时发现疾病,我们的身体会更加健康;如果通信公司能够降低成本,我们的话费将更加实惠……
以上情况,都可以通过大数据的不断积累和不断分析实现。通过这一过程,我们可以发现规律,从而实现更好的未来。
但是,任何事物都有两面性,大数据时代所产生的问题也同样不少。
第一,数据不够安全。无论是企业还是个人,在实践过程中都会或多或少地产生数据。这些数据在当今时代并不安全,会有很多方法使它们泄露。
第二,数据泄露产生不平等。对于用户来讲,数据是一笔财富,但是遭到了别人的窃取,而自己并未得到任何收益,这对于用户来说是不公平的。
第三,用户隐私问题。当用户在网上注册信息后,这些信息很有可能已经被扩散,当用户收到一些莫名其妙的邮件、电话、短信时,其实用户的各种信息早已被非法的商业机构贱卖了。
无意中拍的照片,可能会使人一夜成名。用户的想法、行为、都可能被商家记录在案。人们担心身份被盗用,担心数据造假,害怕数据框定,反感数据的不公平造成的歧视。
要解决这些问题,需要克服许多困难,面临巨大的挑战。虽然企业可以更加细致地去检验他们的系统和流程,但是依然不能完全解决问题。通常数据驱动的决策都比较隐蔽,即使产生威胁,也不会被轻易发现。
任何的领域都需要统一,但是大数据行业尚不能立法,因为大数据趋势变化多端,无法掌握立法所面临的全部背景。
业内专家认为,有必要在计算机课程中增加数据伦理教育,并且更改有歧视倾向的计算机程序。尽管不能完全解决问题,但也能起到一定的作用。
马云说:“很多人还没搞清楚什么是PC互联网,移动互联网来了,我们还没搞清楚移动互联的时候,大数据时代又来了”。不管是喜是忧,大数据时代已经降临。
哈佛大学社会学教授加里•金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程”。现在的大数据领域正面临一个转折点,努力的方向决定着其属性的发展。我们应该尽量消减其负面影响,让大数据发挥其正面作用,从而更好地为人类服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12