
大数据扶贫的先进与隐忧
近年来,随着“大数据”在各领域的广泛应用,用大数据推动扶贫精准化也不断被提及。2015年广西马山事件的出现,更使人们期待和相信大数据在“精准扶贫”方面具有更大威力。确实,我国贫困人口基数大、情况复杂,以前受制于科技水平因素,有关部门长期以来主要以人工的方式采集数据和后期分析进而制定相关政策,这在一定程度上影响到了扶贫效果。
使用“大数据”的思维和方法,不啻多了一双辨别“真贫”“假贫”的火眼金睛。有的媒体引用扶贫部门工作人员的话说:“过去,他家有三个门市房,他说有一个,我就只能相信。现在,他们家三个门市房在哪里我都知道。”另据报道,有的地区的扶贫信息系统内还详细录入了贫困户(村)的致贫原因。这些,无疑为制定符合实际情况的扶贫政策提供了更加科学的依据。
但“大数据扶贫”的一片吹呼声,多少还是令人产生了一丝隐忧。首先,“大数据扶贫”的重点在“贫”,即作为“扶”之对象的贫困人口或贫困群体。在大数据的视野中,贫困群体以及他们的资产、收入、工作等,都可以抽象为一堆总名为“贫困”的冰冷数据,而在现实生活中,这些数据背后站立的却是一个个活生生的人。他们有属于自己的婚丧嫁娶、生老病死和喜怒哀乐。我们都知道,现代人讲究隐私,谁也不愿自己的人生数据被公之于众。尤其是对于贫困者而言,微薄的收入、逼仄的住房、恶劣的境遇、艰难的生活,以及造成这一切的所谓“致贫原因”,甚至作为贫困人口的一员而被“扶”这件事本身,都是他们不愿也不应被随意揭开的。
更何况,在这大量的贫困家庭中,还有许多未成年人,或许因为扶贫的成效、机遇的垂青和个人的奋斗,这些孩子后来改变了命运、过上了体面的生活;又或许因为各种原因,他们无奈地继承了父辈的贫穷。不管怎么样,少时的贫苦经历,不应像烙印一样被暴露在世人面前。而所有这些一旦被大数据化或云端化,其泄露的风险也随之增强。
因此,在大数据扶贫的时代,由于更加细致地掌握了贫困人口的信息,扶贫部门挨家挨户审核贫困人口信息的任务减轻了,维护贫困人口信息安全的任务却更重了。同时,在扶贫工作开展过程中,贫苦地区及人口状况信息是动态变化的;而且,扶贫工作越有成效,信息变化的频率和范围就会越大。而这些作为决策依据的信息并不会自动更新,这就要求扶贫部门加强硬件和软件建设,提高数据跟踪和更新频率,使数据尽可能做到更新、更准,其对工作参考价值才能最大化。
其次,由于大数据的运用,对“贫困数据”的处理将成为扶贫部门的一项大活,这在客观上要求工作人员更多地在办公室内开展工作。进入贫困者家中,和他们面对面交流机会也许会因此减少。但是我们知道,贫困者所需要的不仅是一包米、一壶油或一个就业机会,还需要嘘寒问暖的情感慰藉。实际上,扶贫工作人员在敲开贫困者家门的同时,也为他们打开了改变命运的心理之门。当然,大数据带来的工作便利和效率,也有可能使扶贫人员从繁重的数据整理工作中解脱出来,以更多的时间和精力,与贫困者进行深入的交流,但这一切有赖于制度的调整和设定。
实际上,不论是广西马山事件还是这些年扶贫工作爆出的另一些问题,与其说是数据“失灵”,不如说是制度“失灵”,或者说,大数据不过是用来“察看”贫困状况的工具,而真正“看见”贫困及其给人们带来的痛楚,并采取有效的行动,却需要依靠大数据之外的制度建设。否则,即便把贫苦大数据摆在有关部门面前,它也依然有可能对“真贫”视而不见,却对“假贫”频抛媚眼。
科技的进步,总向我们展示出令人憧憬的美丽新天地。对此,在热烈欢呼的同时还应抱以冷静的思考。每当科技前进一寸,制度往往需要前进一尺,这样才能使它真正造福于人。大数据扶贫也是如此。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08