
分析零距离 数据可视化产品选型指南
大数据的核心不是“大”,也不是“数据”,而是蕴含在其中的商业价值。作为挖掘数据背后潜在价值的重要手段,商业智能和分析平台成为大数据部署中的关键环节。然而,获取价值的难点并不在于应用的部署,而在于专业数据分析人才的缺乏。市场研究机构IDC甚至认为,数据分析人才的欠缺可能会成为影响大数据市场发展的重要因素。
“让每个人都成为数据分析师”是大数据时代赋予的要求,数据可视化的出现恰恰从侧面缓解了专业数据分析人才的缺乏。Tableau、Qlik、Microsoft、SAS、IBM等IT厂商纷纷加入数据可视化的阵营,在降低数据分析门槛的同时,为分析结果提供更炫的展现方式。为了进一步让大家了解如何选择适合的数据可视化产品,本文将围绕这一话题展开,希望能对正在选型中的企业有所帮助。
一、数据可视化概述
数据可视化是技术与艺术的完美结合,它借助图形化的手段,清晰有效地传达与沟通信息。一方面,数据赋予可视化以意义;另一方面,可视化增加数据的灵性,两者相辅相成,帮助企业从信息中提取知识、从知识中收获价值。
维基百科对数据可视化的定义较为权威,它认为数据可视化是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。
1.发展历史
数据可视化的历史可以追溯到二十世纪50年代计算机图形学的早期,人们利用计算机创建出了首批图形图表。到了1987年,一篇题为《Visualization in Scientific Computing(科学计算之中的可视化,即‘科学可视化’)》的报告成为数据可视化领域发展的里程碑,它强调了新的基于计算机的可视化技术方法的必要性。
随着人类采集数据种类和数量的增长,以及计算机运算能力的提升,高级的计算机图形学技术与方法越来越多的应用于处理和可视化这些规模庞大的数据集。二十世纪90年代初期,“信息可视化”成为新的研究领域,旨在为许多应用领域之中对于抽象的异质性数据集的分析工作提供支持。
当前,数据可视化是一个既包含科学可视化,又包含信息可视化的新概念。它是可视化技术在非空间数据上新的应用,使人们不再局限于通过关系数据表来观察和分析数据信息,还能以更直观的方式看到数据及数据之间的结构关系。
2.市场调查
IT168网站在2014年3月进行了一项有关数据可视化的调查,从中可以看出,当前已经部署数据可视化的企业仅为15%,但有56%的企业计划1-2年内部署相关应用。从企业部署可视化的目的来看,排在前三位的分别为:通过可视化发现数据的内在价值(36%)、满足高层领导的决策需要(30%)和满足业务人员的分析需要(25%),仅有9%的企业选择需要更美观的展现效果。
▲数据可视化知名度、流行度和领导者调查
在针对Tableau、Qlik、Tibco software、SAS、Microsoft、SAP、IBM和Oracle八家数据可视化产品和服务提供商的调查中,笔者分别从知名度、流行度和领导者三个角度进行分析。从知名度来看,八家厂商几乎不分先后,只有微小的差距;从流行度来看,SAP、IBM和SAS占据前三位,所在比例分别为19%、18%和17%;从领导者来看,Tableau以40%的优势遥遥领先,这与2014年Gartner的魔力象限排名也非常吻合。
3.技术趋势
数据可视化的思想是将数据库中每一个数据项作为单个图元元素,通过抽取的数据集构成数据图像,同时将数据的各个属性值加以组合,并以多维数据的形式通过图表、三维等方式用以展现数据之间的关联信息,使用户能从不同的维度以及不同的组合对数据库中的数据进行观察,从而对数据进行更深入的分析和挖掘。
传统的数据可视化工具仅仅将数据加以组合,通过不同的展现方式提供给用户,用于发现数据之间的关联信息。近年来,随着云和大数据时代的来临,数据可视化产品已经不再满足于使用传统的数据可视化工具来对数据仓库中的数据抽取、归纳并简单的展现。新型的数据可视化产品必须满足互联网爆发的大数据需求,必须快速的收集、筛选、分析、归纳、展现决策者所需要的信息,并根据新增的数据进行实时更新。因此,在大数据时代,数据可视化工具必须具有以下特性:
(1)实时性:数据可视化工具必须适应大数据时代数据量的爆炸式增长需求,必须快速的收集分析数据、并对数据信息进行实时更新;
(2)简单操作:数据可视化工具满足快速开发、易于操作的特性,能满足互联网时代信息多变的特点;
(3)更丰富的展现:数据可视化工具需具有更丰富的展现方式,能充分满足数据展现的多维度要求;
(4)多种数据集成支持方式:数据的来源不仅仅局限于数据库,数据可视化工具将支持团队协作数据、数据仓库、文本等多种方式,并能够通过互联网进行展现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25