京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从客户满意度出发建立呼叫中心质检评分标准
背景:提升客户满意度是呼叫中心永恒的话题之一,从大的方面来看,主要是通过优化系统、完善流程、提升座席的服务质量三方面入手。本文主要介绍的,是基于统计学理论建立一套与客户满意度相关的质检评分标准。
首先的一个问题是,贵公司的质检成绩同客户满意度相关吗(前提是在所有QC打分标准都一致的情况下)?如果贵公司的客户满意度同质检成绩相关,那么恭喜你,此篇文章可以跳过了~
如果不相关,那原因是什么呢?
需要先解决一个问题,我们用什么来衡量相关性?
业内的常规做法应该是使用质检成绩同客户满意度来做相关性检验,检验使用的是皮尔森相关系数(即Excel里面常用的CORREL函数),这样的检验方法真的正确吗?
我们先从统计学的角度来看这个问题:
皮尔森相关系数是对于符合正态分布的连续型变量进行的检验,即需要对于N名员工的质检成绩与N名员工的满意度结果数据进行操作,其中满意度的数据获取非常容易,且符合样本量的需求,但是N名员工的质检成绩是否能够反应真实水平呢?
毕竟抽查的样本数量有限,我们来看下《抽样计算器》的计算结果:
假设呼叫中心的客户满意度为90%,那么历史缺陷比为10%;22个工作日,每日接线80通,一个月的样本量为:22×80=1760,计算得到需要抽查的样本量为315通(具体数据见附一)。
会有呼叫中心每个月对于座席的录音抽取超过315通吗?
根据业内水平,一个座席一个月能被抽到20通录音已经非常高了!
统计学结论:通过抽查计算的质检分数并不能代表员工的实际质检成绩,那怎么能让你的质检成绩和员工满意度相关呢?
问题随之而来,究竟如何判定质检成绩和客户满意度的相关性?我们的质检标准究竟是不是和客户的实际需求相关?
其实操作很简单:我们引入单通录音评分和单通录音客户满意度的相关性,即使用Logistic回归分析方式对于N列离散数据计算其相关性。
单通录音打分表事例如下:
那我们的这个打分表和客户评价的满意度的相关性是多少呢?
我们来使用JMP软件中的Logistic分析操作,得出W检验数据如下:
可以看出这三个评分标准与客户满意度的卡方值非常高,且P值低于0.005,表明此标准与客户满意度相关。
同时我们也可以使用JMP中特有的“刻画器”工具来进行预估,即我们能够清楚的知道这三项的质检成绩对于满意度的影响情况。
如果这三项都得1分的情况下,客户的不满意度为3%
如果这三项都得0.7分的情况下,客户的不满意度为32%
备注:此数据结论是基于200通录音打分后的结果
我们已经找到评估质检标准同客户满意度相关性的计算模型了,那么相信你现在一定迫不及待要看看自己公司的打分表是否和客户满意度相关,很遗憾地告诉你,不出意外的话,你们的质检标准会和客户满意度相关性很差的,为什么?
我们从业务的角度来看这个问题:
质检评分标准很多东西都是公司要求的,例如称呼客户姓氏、要确认客户问题、语速适中语调上扬等等,更不用说后台的CRM录入、流程的执行(客户是不会关心公司的流程的)、工单派发准确率等等了,但是也别灰心,通过这个方式,如果能够找到2~3个打分标准有较高的相关性就已经非常好了!
举例:
以上内容希望对于大家制定服务中心质检评分标准时有所帮助,谢谢!
附一:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27