
数据湖将如何改变大数据?
世界对数据湖的兴趣依然在不断增长,但如果说对数据湖的宣传都是的话,这就贬低了数据湖真正的能力。“数据仓库”和“大数据”等概念都逐渐深入人心,但“数据湖”仍然是让IT和业务相关者头疼的一件事情。
随着人们对于数据湖的清晰定义、使用案例、最佳实践等信息的需求不断增长,IT专业人士需要一则明确的数据湖指南,回答以下问题:数据湖是什么?我们应该如何利用它?数据湖又将如何改变大数据呢?
1.定义及观点
数据湖成为了核心数据架构中发展得很快的一环,但IT专业人士常有疑惑,数据湖究竟是一个架构策略还是架构的目标呢?实际上并没有清晰的界限,但仍然有方法来解决定义的问题。数据湖是一个中央储存库,为多种数据工作负载储存企业数据;通过数据湖,终端架构可以得到解决,同时数据结构相关的决策也是建立数据湖时的关键。
数据湖被越来越多的采用,而它的实施分为四个关键的阶段:
技术评估。通过进行大数据实验项目,关注几个特定的业务目标和成果,数据湖的使用者可以对这项技术进行测试,并熟悉Apache Hadoop环境的管理。
做出反应。在这个阶段,各公司开始利用Hadoop来解决现有架构的低效率问题,确立清晰可测的业务机会。此外,这个采纳过程对于IT效率的提高也是非常关键的。
主动利用。通过为分析项目合并数据以及利用Hadoop获得经济的可拓展性这两种手段,各公司可以在一个单一的中央存储中管理大量新出现的数据源,例如物联网、社交媒体和非结构化的数据。
建立核心竞争力。随着大数据成为IT战略的核心组成部分,各公司最终能够达到发展的高峰,消除所有业务应用和分析应用之间的隔阂,重新建立一个单一的企业平台。
2.数据湖的组织
得益于Hadoop的灵活性和可拓展性,我们今天能够保存、分类、探索并利用的数据类型比以往任何时候都要多。但避免数据湖成为数据沼泽的关键在于数据治理,数据的组织和安全性也是决定数据探索成败的关键。一个清晰而有条理的数据组织(通常是按类目或者按数据用法划分)能够帮助Hadoop工程师建立更加完善的技术决策,帮助分析师和数据科学家从数据中获取真正的洞察。
3.统一数据探索、数据科学和商务智能
对于企业BI需求、数据探索和数据科学的支持是推动数据湖部署的主要因素,这三项技术能将原始数据用于机器学习算法和统计功能。因为敏捷方法学为企业级BI提供了自适应途径,数据湖就能够落实更多具体的企业业务、性能指标和度量权值,同时可用于储存历史数据。
充满竞争的商业环境让人目不暇接,各公司必须认识到探索技术的关键作用,并认识到解答未知的重要性。这刺激了我们的需要,要把数据直接用于分析技术,产生意义重大的洞察、为企业创造附加价值。
4.成功的关键
要帮助企业从他们的数据湖中实现最大化效益,就必须要考虑以下几个要素:
从长远角度考虑数据。在开始一个数据项目时,必须仔细考虑数据在今后其他应用中的可重用性。要明白未来新产生的数据需求往往是不可预知的,了解这一点后公司就可以更好地相应准备并利用起他们的数据。
先确立数据治理结构。数据治理被应用在了整个企业的数据和信息政策当中,所以在考虑数据湖时也不应该例外。数据治理规范了企业中的每个人对数据湖的使用,并最小化了发生错误和不当数据管理的可能性。
预先解决安全问题。以数据为中心的安全保护提供了从整个数据的生命周期来看数据的宏大视角,此处的关键要素就是从第一天开始就正视安全问题,确立好哪些数据可以引入数据湖,并为数据湖中的各类数据制定使用权限。
尽管数据湖在大数据领域还是一个比较新的词汇,但它已经成为了企业级IT架构和整体数据战略的重要部分。数据湖战略拥有合理的架构,能够和数据科学以及成本低廉、拥有商业基础的机器学习分析完美结合。对于数据湖核心概念的了解能够帮助企业更好地利用并保护自己的数据,同时提高通过数据进行探索的能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07