cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】Tableau滑动条:让数据动态叙事的交互核心

【CDA干货】Tableau滑动条:让数据动态叙事的交互核心
2025-11-21
在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势”“不同客单价区间的用户转化”时,传统固定筛选的图表往往需要反复调整参数,效率低下 ...

【CDA干货】Pyplot树状图:层级数据可视化的技术实现与业务应用

【CDA干货】Pyplot树状图:层级数据可视化的技术实现与业务应用
2025-11-17
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中的决策树模型结果,都需要通过树状图将“父-子”关联关系直观化。matplotlib.pyplot( ...

CDA数据分析师:统计制图(数据可视化)实战指南——让数据洞察“看得见”

CDA数据分析师:统计制图(数据可视化)实战指南——让数据洞察“看得见”
2025-11-14
在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却能快速推动业务决策。这背后的核心逻辑是——统计制图(数据可视化)不是单纯的“画图 ...

【CDA干货】Tableau 累计百分比计算:从基础操作到业务决策落地

【CDA干货】Tableau 累计百分比计算:从基础操作到业务决策落地
2025-10-31
在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征与贡献度,例如 “前 20% 的客户贡献了 80% 的销售额”“前 50% 的产品占据了 90% 的 ...

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具
2025-10-30
对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强度与方向,为决策提供数据支撑” 的核心工具。比如业务想知道 “用户消费频次是否影响 ...

【CDA干货】Tableau index()/size()实战解析

【CDA干货】Tableau index()/size()实战解析
2025-10-27
这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ()” 的核心含义是计算当前数据行在其所属 “分区” 内的相对位置占比,结果通常是一个 ...

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南
2025-10-16
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这些参数的微小调整都可能显著影响模型的预测精度、泛化能力甚至训练效率。但很多从业者 ...

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南
2025-10-11
在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模型效率,更能揭示 “哪些因素真正影响目标结果”(如用户流失的核心原因、房价波动的关 ...

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向
2025-09-10
统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定目标构建的 “数据 - 逻辑 - 结论” 转化载体。在实际应用中,相同的数据通过不同目的 ...

【CDA干货】随机森林中特征重要性(Feature Importance)排名解析

【CDA干货】随机森林中特征重要性(Feature Importance)排名解析
2025-08-14
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广泛应用于分类、回归等任务。而特征重要性(Feature Importance)排名作为随机森林的核 ...

【CDA干货】手把手教你搭建BI可视化看板,优化电商运营决策

【CDA干货】手把手教你搭建BI可视化看板,优化电商运营决策
2025-05-13
CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 学习入口:https://edu.cda.cn/goods/show/3878?targetId=6829&preview=0 一、电商备 ...

【CDA案例】基于 EAST和 FineBI 实现 AARRR 信用卡运营分析

【CDA案例】基于 EAST和 FineBI 实现 AARRR 信用卡运营分析
2025-04-21
CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学习入口:https://edu.cda.cn/goods/show/3834?targetId=6743&preview=0 一、AARRR 模 ...

【干货】5分钟学会数据分析方法之【对比分析法】

【干货】5分钟学会数据分析方法之【对比分析法】
2025-02-05
在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三家”这句话吧?其实,这句话的核心就是对比分析的原理——通过比较不同对象或时间的表 ...

5分钟学会数据分析方法之【对比分析法】

5分钟学会数据分析方法之【对比分析法】
2025-01-26
在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三家”这句话吧?其实,这句话的核心就是对比分析的原理——通过比较不同对象或时间的表 ...

数据分析原理,很多人装懂,其实连这一步都没搞清楚!

数据分析原理,很多人装懂,其实连这一步都没搞清楚!
2024-12-11
数据分析这门技术,看似“高大上”,但真正懂得其原理的人却不多。很多人以为掌握了几种软件工具就算会数据分析了,但事实上,数据分析的核心远不止如此。 今天,我们就来深入聊聊数据分析的基本原理和关键步骤,带 ...
图像识别模型的优化最佳实践
2024-12-06
在机器学习中,特征重要性可视化是一项关键技术,用于评估和展示特征对模型预测结果的影响程度。通过合理利用这些技巧和方法,研究人员和工程师能够更好地优化图像识别模型,提高其性能和准确性。 条形图与水平条形 ...

使用SHAP值计算特征重要性的方法

使用SHAP值计算特征重要性的方法
2024-12-05
在解释机器学习模型预测结果时,特征重要性评估至关重要。其中,SHAP(SHapley Additive exPlanations)作为一种基于博弈论的方法,通过计算每个特征对模型输出的贡献,帮助我们深入理解模型的预测准确性以及特征之 ...
数据分析基础知识精讲
2024-11-30
数据分析概述 数据分析涉及统计方法对数据进行深入理解和提取有用信息,目的在于从大量数据中挖掘隐藏的规律。这个过程至关重要,无论你是初学者还是资深从业者。数据分析可分为描述性、探索性和验证性三种类型。描 ...
CDA数据分析标准课程更新
2024-11-30
2024年12月 CDA 标准课程更新 (v8.0) 脱产班: 新增企业需要的数据能力、数据分析思维、指标体系管理内容 新增标签体系与用户画像内容,及其相应案例 新增归因分析内容 新增进阶数据分析思维、量化策略分析框架 ...
怎么做漂亮的数据分析图表
2024-11-27
选择适当的工具和软件 选择恰当的工具对于创建出色的数据分析图表至关重要。Excel提供强大的数据可视化功能,R语言的ggplot2包则拥有丰富的绘图功能,而Tableau则是一个常用的数据可视化工具。 确定图表目的和受众 ...

OK
客服在线
立即咨询