
在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。
很多人都听过“货比三家”这句话吧?其实,这句话的核心就是对比分析的原理——通过比较不同对象或时间的表现,帮助分析人员快速找到差异、发现问题,甚至挖掘出潜藏的机会。
对比分析,说白了就是把数据摆在一起“看差别”。它的核心目的很简单:通过比较找出谁比较好、谁比较不好等。无论是对各个区域的销售额进行比较,还是分析业绩各个季度的变化,这种“比一比”的方式都可以帮助分析人员快速了解情况。
横向对比---在同一时间内比较不同对象。例如,A品牌和B品牌的市场占有率。
纵向对比---观察同一对象在不同时间段的表现。例如,今年的销售额和去年的对比。
目标对比---实际结果和目标值之间的差异。例如,本月的实际销售额是否达到计划值?
多维度对比---多个维度同时比较。例如,比较不同型号手机在拍照、续航、内存、屏幕、处理器等方面的综合表现。
对比分析的第一步,是问自己:为什么要对比?
目标不同,分析的方向和方法也会不同。比如:
如果想知道销量的变化情况,需要做时间维度上的纵向对比。
如果想选择更好的供应商,需要横向对比它们在价格、交货速度等指标上的表现。
如果想评估团队绩效,可能需要目标对比,看看实际完成情况。
有时候,对比数据本身也可能会产生误导。举个例子:
同一家公司的销售额,上个月可能是按“含税价”计算,这个月却用“净价”统计。如果不统一口径,数据就没有可比性,强行对比出来的结果也会有偏差。
又比如,不同品牌的市场占有率数据,假设拿到的是一家小城市的报告,而不是全国数据,得出的结论可能并不具有代表性。
对比分析的一个大忌就是“错比”或者“瞎比”。
所以,统一数据口径、确保数据的可信度,是开展对比分析的前提。
很多人听过一句话:问不如表,表不如图。所以,在对比分析中,可视化工具是好帮手,常用的可视化图形有:
用来横向对比不同对象的表现,例如不同产品的月度销量。
多层级数据和组成部分的对比,例如不同大类产品及其下属小类产品的销售情况。
适合多维度对比,例如不同产品在价格、质量、功能上的综合表现。
展示各部分的构成对比,例如各区域市场占比的变化。
适合显示差异程度的分布,例如用户点击率在页面不同位置的分布情况。
直观展示不同区域之间的差异和分布,比如某产品在各省市地区的市场占有率。
数据可视化是数据分析岗最重要的技能要求之一,在日常工作中,把海量的数据通过可视化的形式展示出来,方便决策制定,所以CDA数据分析师一级把数据可视化作为核心考点。
不同数据来源或统计口径的差异,可能会导致误导性结论。
维度过多时,可能会让人迷失重点。不妨将分析拆解成几个更小的部分逐步进行。
不要只盯着数字看,差异背后可能还隐藏着外部环境的变化,例如季节性因素、政策调整等。
对比分析看似简单,但真正做到深入透彻并不容易。需要我们既有清晰的目标,又能敏锐地发现数据背后的差异和原因。通过合理地运用对比分析,才可以快速找到业务中的问题点,为优化和决策提供方向。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11