cda

数字化人才认证

首页 > 行业图谱 >

机器学习基础与实践之 数据清洗 !

机器学习基础与实践之数据清洗
2016-07-04
想写这个系列很久了,最近刚好项目结束了闲下来有点时间,于是决定把之前学过的东西做个总结。之前看过一些机器学习方面的书,每本书都各有侧重点,机器学习实战和集体智慧编程更偏向与实战,侧重于对每个算法的实际 ...

 数据清洗 经验分享:什么是 数据清洗  如何做好 数据清洗

数据清洗经验分享:什么是数据清洗 如何做好数据清洗
2019-10-28
数据清洗经验分享:什么是数据清洗 如何做好数据清洗 大数据本身是一座金矿、一种资源,沉睡的资源是很难创造价值的,它必须经过清洗、分析、建模、可视化等过程加工处理之后,才真正产生价值。 数据加工、 ...

数据分析: 数据清洗 的一些梳理

数据分析:数据清洗的一些梳理
2016-03-18
数据分析:数据清洗的一些梳理 数据清洗, 是整个数据分析过程中不可缺少的一个环节,其结果质量直接关系到模型效果和最终结论。在实际操作中,数据清洗通常会占据分析过程的50%—80%的时间。国外有些学术机构会 ...
数据分析师:数据清洗经验_数据分析师考试
2015-06-28
数据分析师:数据清洗经验_数据分析师考试 平时习惯了在某些特定的数据集合上做实验,简单的tokenization、预处理等步骤就足够了。但是在数据越来越大的年代,数据清洗越来越重要,也越来越复杂。看到Ph ...

机器学习中的 数据清洗 与特征处理综述_数据分析师考试

机器学习中的数据清洗与特征处理综述_数据分析师考试
2015-06-28
机器学习中的数据清洗与特征处理综述_数据分析师考试 日常生活工作中,处处都会与数据打交道,但你知道数据是会“说谎”的,即你看到的数据结果并不是事实。本文介绍一些常见的说谎场景以及如何避免。 ...

机器学习中的 数据清洗 与特征处理综述

机器学习中的数据清洗与特征处理综述
2015-06-03
机器学习中的数据清洗与特征处理综述 背景 随着美团交易规模的逐步增大,积累下来的业务数据和交易数据越来越多,这些数据是美团做为一个团购平台最宝贵的财富。通过对这些数据的分析和挖掘,不仅 ...

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力
2025-10-14
在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分析结果转化为业务决策。但成为一名合格的数据分析师,绝非 “会用 Excel 做表”“会写 ...

企业名称:乐在指尖   招聘岗位: 数据分析 25-30K    (数据分析岗位招聘信息)

企业名称:乐在指尖 招聘岗位: 数据分析 25-30K (数据分析岗位招聘信息)
2025-10-14
岗位职责 • 利用 SQL、Python 等工具进行数据清洗、建模及可视化(如 Power BI、Tableau),提升分析效率与准确性。 • 对接业务部门需求,梳理业务流程与财务规则,推动业财数据系统化建 设。 任职要求 1. 核心能 ...

企业名称:慧博云通   招聘岗位: 数据运营分析师10~16K   (数据分析岗位招聘信息)

企业名称:慧博云通 招聘岗位: 数据运营分析师10~16K (数据分析岗位招聘信息)
2025-10-13
游戏行业,可居家办公,5险1金,周末双休 岗位描述: 1、负责海外游戏项目的数据埋点设计、深度事件配置,保障事件链路在广告归因(MMP)中的完整性与准确性;2、与产品、广告投放团队协作,制定用户行为分析模型,对用 ...

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”
2025-10-13
在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易系统、支付平台、物流系统里 —— 这些碎片化的数据无法直接支撑深度分析(如用户生命 ...

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术
2025-10-11
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银行 APP 的 “登录→查询余额→转账”—— 都构成了带有时间顺序的 “行为序列”。这些 ...

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”
2025-10-11
在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified Data Analyst)分析师每次取数都需 “翻箱倒柜”,不仅浪费 60% 的时间在找数据上,还 ...

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧
2025-10-10
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转为字符串用于报表展示,亦或是调整字符编码适配不同系统,都离不开专门的转换工具。CON ...

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南
2025-09-30
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之一 —— 无论是筛选 “性别为男的用户”“销售额超过 1000 的订单”,还是 “包含‘北 ...

【CDA干货】Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界

【CDA干货】Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界
2025-09-29
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分类标签,通过数据自身的相似性将样本划分为若干组(聚类),广泛用于客户分群、产品归 ...

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”
2025-09-29
在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加工—— 即将分散的原始数据(如用户行为日志、订单记录)通过清洗、计算、建模等手段, ...

【CDA干货】Excel 数据透视表折叠功能:空白列添加技巧与层级优化指南

【CDA干货】Excel 数据透视表折叠功能:空白列添加技巧与层级优化指南
2025-09-28
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或折叠为汇总视图,实现 “一表多用” 的动态分析效果。但当透视表包含多级行 / 列字段 ...

CDA 数据分析师:以 SQL 为刃,劈开数据查询与分析的 “效率壁垒”

CDA 数据分析师:以 SQL 为刃,劈开数据查询与分析的 “效率壁垒”
2025-09-28
在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论是从千万级订单表中提取目标数据,还是从多表关联中整合用户消费信息,抑或是通过聚合 ...

CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线”

CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线”
2025-09-26
CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified Data Analyst)数据分析师面临的第一个核心问题。无论是电商平台的用户订单、金融机构 ...

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径
2025-09-25
深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关键超参数之一 —— 过少的神经元会导致模型 “欠拟合”(无法学习到数据的复杂规律), ...

OK
客服在线
立即咨询