
数据清洗是整个数据分析过程中一个非常重要的环节。数据清洗的目的有两个,第一是通过清洗让数据可用。第二是让数据变的更适合进行后续的分析工作。本篇文章将介绍几种简单的使用R进行数据清洗的方法。
读取并创建数据表
首先将数据读取到R中,并创建名为loan的数据表。后面我们将对这个数据表进行清洗。
#读取并创建数据表
loan=data.frame(read.csv('loan.csv',header = 1))
使用head函数查看数据表的前5行。
#查看数据表前5行
head(loan)
数据清洗
重复值
使用duplicated函数查看数据表中的用户ID列是否存在重复值,duplicated函数返回该字段每一行的检查结果,重复的标记为TURE,不重复的值标记为FALSE。在下面的结果中可以看到数据表的用户ID列最后四个值为重复值。
#查看特定列是否有重复
duplicated(loan$member_id)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
对于包含重复值的数据表,可以使用unique函数提取数据表中的唯一值,并用唯一值覆盖原有数据,达到去除重复值的目的。下面的代码提取了loan数据表中的唯一值,并重新赋给loan数据表。此时loan数据表中就不包含重复值了。
#删除重复值,返回唯一值列表
loan=unique(loan)
去除完重复值后,再次使用duplicated函数查看,返回的结果中都为FALSE,已经没有重复值了。
#查看重复值
duplicated(loan$member_id)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
查找空值
使用is.na函数查看数据表中的空值,和重复值一样,空值在结果中显示为TURE,非空值显示为FALSE。下面是对loan数据表检查空值的代码和结果。
#查找数据表中的空值
head(is.na(loan),n = 10)
除了对数据表查看空值以外,还可以对表中特定的列检查空值,在is.na函数中输入表和列的名称,就会看到该列中空值的情况,TRUE为空值,FALSE为非空值。
#查看特定列中的空值
is.na(loan$loan_amnt)
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
填充空值
对于数据表中的空值,有两种处理方法,第一种是用0进行填充,第二种是删除包含空值的行。下面是第一种方法,将loan表中的空值填充为0.
#将空值填充为0
loan[is.na(loan)] <- 0
[/code]
第二种方法使用 删除loan表中包含有空值的行。
[code lang="r"]
#删除空值所在行
loan<-na.omit(loan)
[/code]
<h2>
大小写转换</h2>
英文字母的大小写和字符间的空格是影响数据统计的一个常见原因。例如下面我们使用table函数对数据表按贷款状态进行汇总时,相同的贷款状态由于大小写和空格被分割成多种状态。造成统计数据不可用。下面我们对这个字段进行大小写转换和去除空格的清洗。
#按贷款状态进行汇总
table(loan$loan_status)
Fully Paid charged off Charged Off Charged Off Current fully paid fully Paid Fully paid Fully Paid
1 1 8 1 1 2 1 1 15
将英文字母转换为小写的函数是tolower,下面的代码中我们将贷款状态列统一转化为小写字母,然后重复赋给数据表中的贷款状态列。
#将贷款状态转换为小写
loan$loan_status=tolower(loan$loan_status)
转化完成后,再次使用table函数按贷款状态进行汇总,下面下面的结果中可以看到分类从之前的8个减少到了4个,并且的分类都为小写字母。下面我们在继续进行空格清洗。
#按贷款状态进行汇总
table(loan$loan_status)
fully paid charged off charged off current fully paid
1 9 1 1 19
去除两侧空格
去除字符间的空格比大小写转换要复杂一些,首先我们将需要去除空格的列单独拿出来
#提取贷款状态列
loan_status=as.vector(loan$loan_status)
然后使用trim函数去除该列中的空格,trim函数在raster包中,因此需要先安装raster的包。
#安装raster包
install.packages('raster')
安装完成后加载raster包。
#加载raster包
library(raster)
加载完raster包后,使用trim函数去除贷款状态字符中的空格。
#去除贷款状态字段中的空格
loan_s=trim(loan_status)
使用去除完空格的贷款状态覆盖数据表中原有的贷款状态列。
#覆盖原有贷款状态字段
loan$loan_status=loan_s
去除完空格后,再次按贷款状态进行汇总,结果从5个减少为3个,恢复正常。
#按贷款状态进行汇总
table(loan$loan_status)
charged off current fully paid
10 1 20
查看数据类型
使用typeof函数可以查看数据表中字段的数据类型,下面的代码对数据表中的用户收入字段进行数据类型查看,结果为double型。
#查看用户收入字段的数据类型
typeof(loan$annual_inc)
[1] "double"
更改数据类型
使用as.integer函数将用户收入字段的数据类型由double型转化为integer型。
#将用户收入字段更改为integer
loan$annual_inc=as.integer(loan$annual_inc)
转化后再次使用typeof函数查看数据类型,此时已经显示数据类型为integer。
#查看用户收入字段
typeof(loan$annual_inc)
[1] “integer”
数据预处理
数据分列
很多时候我们需要对一列数据进行分裂处理,在excel中直接使用分列功能就可以完成,在R中,使用strsplit函数也可以实现。首先将需要分列的列单独提取出来。这里我们需要对贷款期限进行分裂。
#提取贷款期限字段
term=as.vector(loan$term)
[1] ” 36 months” ” 60 months” ” 36 months” ” 36 months” ” 60 months” ” 36 months” ” 60 months” ” 36 months” ” 60 months” ” 60 months”
[11] ” 60 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months”
[21] ” 60 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 60 months” ” 36 months” ” 36 months”
[31] ” 36 months” ” 60 months” ” 36 months” ” 36 months”
然后使用strsplit函数对贷款期限进行分列,分列的依据是空格。具体代码和分列的结果如下所示。
#使用空格对字段进行分裂
strsplit(term,' ')
[[1]]
[1] “” “36” “months”
[[2]]
[1] “” “60” “months”
[[3]]
[1] “” “36” “months”
除了分列以外,还可以对一个字段中的某些信息进行提取,并单独形成一列进行分析。下面我们对贷款日期中的月份进行提取,并合并到原数据表中。提取月份所使用的函数为substr。下面的代码中对贷款日期字段的4-6位进行提取,这部分对应着月信息。
#提取贷款日期字段中的月信息(4-6位)
month=substr(loan$issue_d,4,6)
#查看提取的月信息
month
[1] “Jun” “Sep” “Jun” “Apr” “Jun” “Jan” “May” “Dec” “Aug” “Mar” “Dec” “Aug” “Nov” “Jun” “Mar” “Jun” “Apr” “May” “Jul” “Feb” “Jun” “Jun”
[23] “Jun” “Mar” “Mar” “Sep” “Jun” “May” “Jun” “Dec” “Jun” “May” “Jun” “Dec”
将提取出来的月信息与原数据表合并,并查看前5行数据,从下面的结果中可以看出第一列是新增加的月信息。
#将月信息与原贷款表合并并查看前5行
head(cbind(month,loan))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14