cda

数字化人才认证

首页 > 行业图谱 >

数据分析中的缺失值处理
2017-12-01
数据分析中的缺失值处理 没有高质量的数据,就没有高质量的数据挖掘结果,数据值缺失是数据分析中经常遇到的问题之一。当缺失比例很小时,可直接对缺失记录进行舍弃或进行手工处理。但在实际数据中,往往 ...
数据探索之缺失值处理及代码实现
2017-11-30
数据探索之缺失值处理及代码实现 在数据挖掘中,前期数据预处理,会涉及到很多缺失值的处理问题。 现以python代码实现为例,看如何具体处理的。 所需python包 from pandas import Series, DataFrame import pan ...

数据清洗之python实现 缺失值处理

数据清洗之python实现缺失值处理
2020-07-24
在实际的数据清洗过程中,我们经常会遇到数据内容丢失的情况,这些丢失的数据内容就是缺失值。缺失值的产生的原因多种多样,主要分为机械原因和人为原因。 机械原因,也就是由于例如,数据存储失败,存储器损坏 ...
常用的python缺失值处理方法有哪几种?
2020-07-06
缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。 python缺失的处理一般情况下有三种方法: (1)删掉缺失值数据 删除法是 ...

数据分析实践入门: 缺失值处理 、重复值处理、异常值处理等

数据分析实践入门:缺失值处理、重复值处理、异常值处理等
2020-05-11
从菜市场买来的菜,总有一些是坏掉的不太好的,所以把菜买回来之后要做一遍预处理,也就是把那些坏掉的不太好的部分扔掉。现实中大部分的数据都类似于菜市场的菜品,拿到手以后会有一些不好的数据,所以都要先做 ...

R语言 缺失值处理

R语言缺失值处理
2017-11-25
R语言缺失值处理 缺失值 1. is.na 确实值位置判断 注意: 缺失值被认为是不可比较的,即便是与缺失值自身的比较。这意味着无法使用比较运算 符来检测缺失值是否存在。例如,逻辑测试myvar == NA的结果永远不会 ...

R语言中的 缺失值处理

R语言中的缺失值处理
2017-02-27
R语言中的缺失值处理 在处理一些真实数据时,样本中往往会包含缺失值(Missing values)。我们需要对缺失值进行适宜的处理,才能建立更为有效的模型,使得后续预测分析能有更小的偏差。本文将罗列不同的缺失值处 ...

CDA数据分析师实战:逻辑回归的业务应用与落地指南

CDA数据分析师实战:逻辑回归的业务应用与落地指南
2026-01-14
在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判断客户是否存在违约风险”“识别用户是否为流失高潜人群”。这类需求的核心是“将数据 ...

【CDA干货】数据清洗基本流程全解析:从“脏数据”到“高质量数据”的蜕变

【CDA干货】数据清洗基本流程全解析:从“脏数据”到“高质量数据”的蜕变
2026-01-13
在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在重复、缺失、异常、格式混乱等问题,这些“脏数据”会直接导致分析结果失真,甚至误导 ...

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南
2026-01-09
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户,并找到流失背后的核心原因,进而制定针对性的挽留策略,已成为企业精细化运营的核心诉 ...

【CDA干货】线性回归在多因子选股中的应用全解析

【CDA干货】线性回归在多因子选股中的应用全解析
2026-01-09
在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流动性等),筛选出综合因子表现优异的股票,构建具有超额收益潜力的投资组合。而线性回 ...

【CDA干货】电商公司数据分析师必备技能全解析

【CDA干货】电商公司数据分析师必备技能全解析
2026-01-08
在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的“导航员”——他们通过挖掘订单、用户、商品、运营活动等数据中的规律,为GMV提升、 ...

CDA数据分析师实战核心:数据清洗的价值、流程与落地技巧

CDA数据分析师实战核心:数据清洗的价值、流程与落地技巧
2026-01-05
在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题,这些“带病数据”会直接导致分析结论失真、建模效果失效,甚至误导业务决策。CDA(Cer ...

【CDA干货】数据稳定性评估全指南:指标、方法与实操价值

【CDA干货】数据稳定性评估全指南:指标、方法与实操价值
2026-01-04
在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有规律,为预测、优化等决策提供坚实支撑;而不稳定的数据往往夹杂着随机波动、异常干扰 ...

【CDA干货】游戏流失预测:解码用户行为序列中的流失信号

【CDA干货】游戏流失预测:解码用户行为序列中的流失信号
2025-11-20
在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从“高频登录”到“间隔变长”,从“付费活跃”到“零消费”,每一步变化都藏在用户行为 ...

CDA数据分析师:数据分析基础范式的践行者与价值放大器

CDA数据分析师:数据分析基础范式的践行者与价值放大器
2025-11-13
在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结果反复推翻”的困境,核心原因在于缺乏统一的“基础范式”作为行动纲领。数据分析基础 ...

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用
2025-11-11
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的收益波动分析,再到监管合规的数据报送,统计方法是金融机构控制风险、提升收益的核心 ...

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例
2025-11-04
在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升收入、优化体验” 的隐性规律。但数据挖掘并非 “拿到数据就建模” 的无序过程,需遵循 ...

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具
2025-10-31
在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户是否会购买产品”“识别交易是否为欺诈”。这类问题无法用预测数值的线性回归解决,而 ...

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”
2025-10-23
在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技巧(分析模型),也无法烹制出符合要求的佳肴(可靠结论)。据行业调研显示,CDA(Cert ...

OK
客服在线
立即咨询