京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源: Python猫
作者:豌豆花下猫
在 C/C++/Java 等等语言中,整型变量的自增或自减操作是标配,它们又可分为前缀操作(++i 和 --i)与后缀操作(i++ 和 i--),彼此存在着一些细微差别,各有不同的用途。
这些语言的使用者在接触 Python 时,可能会疑惑为什么它不提供 ++ 或 -- 的操作呢?在我前不久发的《Python的十万个为什么?》里,就有不少同学在调查问卷中表示了对此话题感兴趣。
Python 中虽然可能出现 ++i 这种前缀形式的写法,但是它并没有“++”自增操作符,此处只是两个“+”(正数符号)的叠加而已,至于后缀形式的“++”,则完全不支持(SyntaxError: invalid syntax)。
本期“Python为什么”栏目,我们将会从两个主要的角度来回答:Python 为什么不支持 i++ 自增语法?(PS:此处自增指代“自增和自减”,下同)
首先,Python 当然可以实现自增效果,即写成i+=1或者i=i+1,这在其它语言中也是通用的。
虽然 Python 在底层用了不同的魔术方法(__add__()和__iadd__())来完成计算,但表面上的效果完全相同。
所以,我们的问题可以转化成:为什么上面的两种写法会胜过 i++,成为 Python 的最终选择呢?
当我们定义i = 1000时,不同语言会作出不同的处理:
所以当我们令i“自增”时(i=i+1),它们的处理是不同的:
打一个不太恰当的比方:C 中的 i 就像一个宿主,数字 1000 寄生在它上面;而 Python 中的 1000 像个宿主,名称 i 寄生在它上面。C 中的 i 与 Python 中的 1000,它们则寄生在底层的内存空间上……
还可以这样理解:C 中的变量 i 是一等公民,数字 1000 是它的一个可变的属性;Python 中的数字 1000 是一等公民,名称 i 是它的一个可变的属性。
有了以上的铺垫,我们再来看看i++,不难发现:
Python 若支持 i++,其操作过程要比 C 的 i++ 复杂,而且其含义也不再是“令数字增加1”(自增),而是“创建一个新的数字”(新增),这样的话,“自增操作符”(increment operator)就名不副实了。
Python 在理论上可以实现 i++ 操作,但它就必须重新定义“自增操作符”,还会令有其它语言经验的人产生误解,不如就让大家直接写成i += 1或者 i = i + 1好了。
C/C++ 等语言设计出 i++,最主要的目的是为了方便使用三段式的 for 结构:
for(int i = 0; i < 100; i++){
// 执行 xxx
}
这种程序关心的是数字本身的自增过程,数字做加法与程序体的执行相关联。
Python 中没有这种 for 结构的写法,它提供了更为优雅的方式:
for i in range(100): # 执行 xxx my_list = ["你好", "我是Python猫", "欢迎关注"] for info in my_list: print(info)
这里体现了不同的思维方式,它关心的是在一个数值范围内的迭代遍历,并不关心也不需要人为对数字做加法。
Python 中的可迭代对象/迭代器/生成器提供了非常良好的迭代/遍历用法,能够做到对 i++ 的完全替代。
例如,上例中实现了对列表内值的遍历,Python 还可以用 enumerate() 实现对下标与具体值的同时遍历:
my_list = ["你好", "我是Python猫", "欢迎关注"] for i, info in enumerate(my_list): print(i, info) # 打印结果: 0 你好 1 我是Python猫 2 欢迎关注
再例如对于字典的遍历,Python 提供了 keys()、values()、items() 等遍历方法,非常好用:
my_dict = {'a': '1', 'b': '2', 'c': '3'}
for key in my_dict.keys():
print(key)
for key, value in my_dict.items():
print(key, value)
有了这样的利器,哪里还有 i++ 的用武之地呢?
不仅如此,Python 中基本上很少使用i += 1或者 i = i + 1,由于存在着随处可见的可迭代对象,开发者们很容易实现对一个数值区间的操作,也就很少有对于某个数值作累加的诉求了。
所以,回到我们开头的问题,其实这两种“自增”写法并没有胜出 i++ 多少,只因为它们是通用型操作,又不需要引入新的操作符,所以 Python 才延续了一种基础性的支持。真正的赢家其实是各种各样的可迭代对象!
稍微小结下:Python 不支持自增操作符,一方面是因为它的整数是不可变类型的一等公民,自增操作(++)若要支持,则会带来歧义;另一方面主要因为它有更合适的实现,即可迭代对象,对遍历操作有很好的支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01