京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		文章来源:接地气学堂微信公众号
作者: 陈老师
又到一年高考时,又要填志愿,很多人问:“想从事大数据行业的话,报什么专业比较好???”刚好一些同学也有类似问题,今天系统解答一下
直观感觉是:从事数据相关工作和学什么专业没啥关系。特别是,如果把眼光放到部门级领导或以上,就更跟专业没啥关系了。陈老师接触超过200个企业,没有看到特别集中的专业,可见后天努力比先天选专业更重要。但是专业、学校、学历是大家求职的敲门砖。特别是高等教育越来越普及,即使都是敲门砖,某些砖还是更好使的。所以可以按敲门的好使唤程度排排序。
第一位:应用数学
陈老师本人就是被这四个字拖下水的。因为普通大众都对数学两个字深有敬畏。一听说这哥们居然读大学敢读数学,心中一股:卧槽牛X啊!之情便油然而出。如果是985的应用数学,那哥们,就你了。于是各种数据相关的事都会优先拉上你干。明明我研究生是学管理学的。可who care!这数据的活就该你干,你不行你也得上……
O(╯□╰)o
第二位:计算机相关专业
近年来企业招的数据分析师,其实大部分应该叫:数据程序员。基本上都是进公司跑数据的,不做啥“分析”,因此计算机相关专业会有优势。毕竟写代码写的多吗。数据仓储,算法这些就更依赖开发能力,这本来就是计算机专业的范畴。
第三位:市场营销、企业管理专业
实际上,真要做分析的话,需要懂商业知识+有分析思路,这一点文科生会更擅长。而且市场营销、企业管理等专业一定会学市场调查。因此对于数据处理、数据分析的基本操作是了解的。未来走咨询、数据运营、数据分析、市场研究、行业研究的路线是很OK的。
第四位:心理学、社会学
不要小看这两个专业,这两个专业对于数据的应用能力绝对远远超过上边三个专业。知乎注明数据大V chenqin就是搞社会学的,那数据分析能力压倒一大堆只会跑数的表哥。心理学里提假设、设计实验、采集数据、验证假设的思路,就是数据分析的思路,一毛一样。因此这两个专业的数据部门领导还挺多的。
第五位:统计学
和应用数学相反,这是个被名字拖累的专业。人们往往惧怕数学,但一听统计就觉得:好一般哦。是不是就是掰指头数数的。严重低估了统计学的专业性。其实统计学是很适合做数据相关工作的。学统计的同学们思路活跃一点哦。
其他专业:其实完完全全和数据没有关系的专业很少。因为几乎所有的理工专业都要做实验,都设计数据、统计等理论,几乎所有文科专业都要学市场调查,都要搞实证研究。更本质的看,数据分析是一种技能,人人可以学,学了都有用,数据仓储才是相对专业的IT范畴。这是个要用数据说话的年代,懂点数据相关知识挺好的,工作学习两不误。
另:顺便把其他影响因素也一起说了。如果把眼光放到部门级领导或以上,你会发现,适合在数据领域成功的特征还有:
学校&学历:越高越好
985≥普通本科,研究生≥本科生。不要迷信那些所谓
“大专学生自学java三年年薪百万”
“高中辍学搬砖自学ios开发年薪百万”
“初中辍学自学python成为数据科学家进入BAT”
一类的鬼话。现在高等教育这么普及,对在校生而言,就是学历越高,学校越好越吃香。如果你还在学校,还有改变学历和学校的机会,一定要努力一把。如果已经工作了就算了。
星座:处女座
点评:你以为是擅长思考的天蝎……才不是呢,哈哈。这是个很玄学的现象:十个数据部门领导六个处女座。可能因为处女座比较纠结,做的东西很细,因此深得大老板赏识。
Pdp性格:孔雀
点评:你以为是擅长思考的猫头鹰……才不是呢,哈哈。这又是很玄学的现象:十个数据部门领导五个是孔雀。可能因为数据部门比较容易被冷落,孔雀张扬能来事,更容易让大老板看到成绩。
特别提醒:
大学不是职业培训学校,更不是企业的新员工入职培训。所以大学学的课没法直接用到工作上是很正常的。如果有:培训培训就上岗的想法,应该直接去读技校,不要上大学了。想提升实操能力就去找实习,从最基础的地方做起。搬搬砖再回来看看理论,会有更多深刻的认识。
大学能给到每位同学的资源,包括未来的老公/老婆,包括身份认同、包括社交圈子、包括见识增长、包括底层能力提升、包括求职/创业的敲门砖,都是很宝贵的资源。所以不要一门心思的琢磨怎么在四年后当一头合格的社畜,有的是各种选择留给大家,不要辜负了美好时光才是。
祝愿每位学子不负韶华,学有所成。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28