京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源:接地气学堂微信公众号
作者: 陈老师
又到一年高考时,又要填志愿,很多人问:“想从事大数据行业的话,报什么专业比较好???”刚好一些同学也有类似问题,今天系统解答一下
直观感觉是:从事数据相关工作和学什么专业没啥关系。特别是,如果把眼光放到部门级领导或以上,就更跟专业没啥关系了。陈老师接触超过200个企业,没有看到特别集中的专业,可见后天努力比先天选专业更重要。但是专业、学校、学历是大家求职的敲门砖。特别是高等教育越来越普及,即使都是敲门砖,某些砖还是更好使的。所以可以按敲门的好使唤程度排排序。
第一位:应用数学
陈老师本人就是被这四个字拖下水的。因为普通大众都对数学两个字深有敬畏。一听说这哥们居然读大学敢读数学,心中一股:卧槽牛X啊!之情便油然而出。如果是985的应用数学,那哥们,就你了。于是各种数据相关的事都会优先拉上你干。明明我研究生是学管理学的。可who care!这数据的活就该你干,你不行你也得上……
O(╯□╰)o
第二位:计算机相关专业
近年来企业招的数据分析师,其实大部分应该叫:数据程序员。基本上都是进公司跑数据的,不做啥“分析”,因此计算机相关专业会有优势。毕竟写代码写的多吗。数据仓储,算法这些就更依赖开发能力,这本来就是计算机专业的范畴。
第三位:市场营销、企业管理专业
实际上,真要做分析的话,需要懂商业知识+有分析思路,这一点文科生会更擅长。而且市场营销、企业管理等专业一定会学市场调查。因此对于数据处理、数据分析的基本操作是了解的。未来走咨询、数据运营、数据分析、市场研究、行业研究的路线是很OK的。
第四位:心理学、社会学
不要小看这两个专业,这两个专业对于数据的应用能力绝对远远超过上边三个专业。知乎注明数据大V chenqin就是搞社会学的,那数据分析能力压倒一大堆只会跑数的表哥。心理学里提假设、设计实验、采集数据、验证假设的思路,就是数据分析的思路,一毛一样。因此这两个专业的数据部门领导还挺多的。
第五位:统计学
和应用数学相反,这是个被名字拖累的专业。人们往往惧怕数学,但一听统计就觉得:好一般哦。是不是就是掰指头数数的。严重低估了统计学的专业性。其实统计学是很适合做数据相关工作的。学统计的同学们思路活跃一点哦。
其他专业:其实完完全全和数据没有关系的专业很少。因为几乎所有的理工专业都要做实验,都设计数据、统计等理论,几乎所有文科专业都要学市场调查,都要搞实证研究。更本质的看,数据分析是一种技能,人人可以学,学了都有用,数据仓储才是相对专业的IT范畴。这是个要用数据说话的年代,懂点数据相关知识挺好的,工作学习两不误。
另:顺便把其他影响因素也一起说了。如果把眼光放到部门级领导或以上,你会发现,适合在数据领域成功的特征还有:
学校&学历:越高越好
985≥普通本科,研究生≥本科生。不要迷信那些所谓
“大专学生自学java三年年薪百万”
“高中辍学搬砖自学ios开发年薪百万”
“初中辍学自学python成为数据科学家进入BAT”
一类的鬼话。现在高等教育这么普及,对在校生而言,就是学历越高,学校越好越吃香。如果你还在学校,还有改变学历和学校的机会,一定要努力一把。如果已经工作了就算了。
星座:处女座
点评:你以为是擅长思考的天蝎……才不是呢,哈哈。这是个很玄学的现象:十个数据部门领导六个处女座。可能因为处女座比较纠结,做的东西很细,因此深得大老板赏识。
Pdp性格:孔雀
点评:你以为是擅长思考的猫头鹰……才不是呢,哈哈。这又是很玄学的现象:十个数据部门领导五个是孔雀。可能因为数据部门比较容易被冷落,孔雀张扬能来事,更容易让大老板看到成绩。
特别提醒:
大学不是职业培训学校,更不是企业的新员工入职培训。所以大学学的课没法直接用到工作上是很正常的。如果有:培训培训就上岗的想法,应该直接去读技校,不要上大学了。想提升实操能力就去找实习,从最基础的地方做起。搬搬砖再回来看看理论,会有更多深刻的认识。
大学能给到每位同学的资源,包括未来的老公/老婆,包括身份认同、包括社交圈子、包括见识增长、包括底层能力提升、包括求职/创业的敲门砖,都是很宝贵的资源。所以不要一门心思的琢磨怎么在四年后当一头合格的社畜,有的是各种选择留给大家,不要辜负了美好时光才是。
祝愿每位学子不负韶华,学有所成。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09